/UNet-CRF-RNN

Edge-aware U-Net with CRF-RNN layer for Medical Image Segmentation

Primary LanguagePython

U-Net with a CRF-RNN layer

This project aims at improving U-Net for medical images segmentation. Our model was implemented using Tensorflow and Keras, and the CRF-RNN layer refers to this repo

Introducion

  • U-Net with CRF-RNN layer paper:
  1. UNet-CRF-RNN
  • Reference paper:
  1. U-Net
  2. FCN
  3. CRF-RNN

This repo provides an U-Net with the CRF-RNN layer, and also provides some extract models for comparison, like SegNet, FCN, vanilla U-Net and so on.

modelFns = {'unet':Models.VanillaUnet.VanillaUnet, 
            'segnet':Models.Segnet.Segnet , 
            'vgg_unet':Models.VGGUnet.VGGUnet , 
            'vgg_unet2':Models.VGGUnet.VGGUnet2 , 
            'fcn8':Models.FCN8.FCN8, 
            'fcn32':Models.FCN32.FCN32, 
            'crfunet':Models.CRFunet.CRFunet   }

Usage

  • data hierarchy
    Use the Keras data generators to load train and test
    Image and label are in structure:
        train/
            img/
                0/
            gt/
                0/

        test/
            img/
                0/
            gt/
                0/

  • Training parameters
'--batch_size', type=int, default=1, help='input batch size'
'--learning_rate', type=float, default=0.0001, help='learning rate'
'--lr_decay', type=float, default=0.9, help='learning rate decay'
'--epoch', type=int, default=80, help='# of epochs'
'--imSize', type=int, default=320, help='then crop to this size'
'--iter_epoch', type=int, default=0, help='# of iteration as an epoch'
'--num_class', type=int, default=2, help='# of classes'
'--checkpoint_path', type=str, default='', help='where checkpoint saved'
'--data_path', type=str, default='', help='where dataset saved. See loader.py to know how to organize the dataset folder'
'--load_from_checkpoint', type=str, default='', help='where checkpoint saved'
  • Train your model
    python train.py --data_path ./datasets/ --checkpoint_path ./checkpoints/
    
  • Visualize the train loss, dice score, learning rate, output mask, and first layer convolutional kernels per iteration in tensorboard
    tensorboard tensorboard --logdir=./checkpoints
    
  • Evaluate your model
    python eval.py --data_path ./datasets/ --load_from_checkpoint ./checkpoints/model-xxxx
    

Result

  • Dataset
  1. Hippocampus Segmentation: ADNI
  2. Hippocampus Segmentation: NITRC
  • Parameters
param value
batch_size 5
epoch 80
iter_epoch 10
imSize 320
learning_rate 0.001
lr_decay 0.9
  • Result
model IU DSC PA
CNN-CRF 68.73% 73.22% 51.77%
FCN-8s 59.61% 65.73% 44.26%
Segnet 70.85% 79.01% 58.03%
Vanilla U-Net 75.42% 83.49% 72.18%
U-Net-CRF 78.00% 85.77% 79.05%
Our method 79.89% 87.31% 81.27%