ATTENTIVE DEEP K-SVD NETWORK FOR PATCH CORRELATED IMAGE DENOISING
├── AKSVD_function.py # model and data processing
├── AKSVD_training.py # main training code
├── assets
│ └── process_1.png
├── cbam.py # attention module
├── load_model.py # main testing code
├── README.md
├── requirements.txt
├── gray # BSDS
│ ├── *.jpg
├── Set12
│ ├── *.jpg
├── test_gray.txt
├── test_set12.txt
├── train_gray.txt
└── visualization.py
-
Installation
pip install -r requirements.txt
-
Run the training code
python AKSVD_training.py
-
Run the testing code
- First, set your model path
# load_model.py model.load_state_dict(torch.load("../model.pth", map_location="cpu")) model.to(device) model.eval()
-
Second, set the name of dataset
# Test image names: file_test = open("test_set12.txt", "r") # line 57 # Test Dataset: my_Data_test = AKSVD_function.FullImagesDataset( root_dir="Set12", image_names=onlyfiles_test, sigma=sigma, transform=data_transform ) # line 79
-
Finally, run the testing code
python load_model.py