- 按文章目标(mainly based on The Emerging Trends of Multi-Label Learning)
- 综述类
Title | Description | State | Repository |
---|---|---|---|
A Review On Multi-Label Learning Algorithms | 周志华老师的,更多地关注于机器学习方法,8种常见模型 | ✔️ | None |
The Emerging Trends of Multi-Label Learning | Anchor, | ✔️ | None |
-
XMLC(Extreme multi-label learning)
⭐ one vs all.
传统的就是针对每一个标签训练一个分类器,削弱了每个标签之间的关联性。
可推荐阅读:
Title | Description | State | Repository |
---|---|---|---|
DiSMEC - Distributed Sparse Machines for Extreme Multi-label Classification | ❌ | None | |
Deep Extreme Multi-label Learning | ❌ | ||
*ML-Decoder: Scalable and Versatile Classification Head | 可以面向特别多标签的情况进行处理 |
:star: Tree
Title | Description | State | Repository |
---|---|---|---|
Extreme F-measure maximization using sparse probability estimates | ❌ | None | |
A no-regret generalization of hierarchical softmax to extreme multi-label classification | ❌ | None | |
Fastxml: a fast, accurate and stable tree-classifier for extreme multi-label learning | classic | ❌ | None |
:star: Embedding
Title | Description | State | Repository |
---|---|---|---|
Sparse local embeddings for extreme multi-label classification | SLEEC,经典方法! | ❌ | None |
Partial Multi-Label Learning by Low-Rank and Sparse Decomposition. | ❌ | None | |
Query2Label: A Simple Transformer Way to Multi-Label Classification | Transformer的decoder学习label embedding,思路其实很简单,用一个Embedding层把它和backbone输出的channel数相match即可,backbone输出[2048,14,14]的feature map,2048是channel, 也是embedding,所以label的embedding大小也是2048。 | ✔️ | https://github.com/SlongLiu/query2labels |
- PML(Partial multi-label learning)
Title | Description | State | Repository |
---|---|---|---|
Partial Multi-Label Learning | classic | ❌ | None |
Partial Multi-Label Learning with Label Distribution | ❌ | None | |
Partial Multi-Label Learning via Credible Label Elicitation | ❌ | None | |
-
SSMLC(semi-supervised MLC)
-
MLML(Multi-label learning with missing label)
Title | Description | State | Repository |
---|---|---|---|
Asymmetric Loss For Multi-Label Classification | classic,改loss function,提出ASL,对正负标签施加不同的focal weight | ✔️ | Alibaba-MIIL/ASL: Official Pytorch Implementation of: "Asymmetric Loss For Multi-Label Classification"(ICCV, 2021) paper (github.com) |
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels | 改loss function,加了Hill Loss, SPLC和focal margin | ✔️ | xinyu1205/robust-loss-mlml (github.com) |
Learning a Deep ConvNet for Multi-label Classification with Partial Labels | 多篇文章提到! | ❌ | None |
- 按多标签分类中标签数量分类
- single label
Title | Description | State | Repository |
---|---|---|---|
Multi-Label Learning from Single Positive Labels | 改loss function | ✔️ | |
Acknowledging the Unknown for Multi-label Learning with Single Positive Labels | ❌ |
- 按文章的改进方向
- improve loss function
(注:标*的代表上面已有相同的item)
Title | Description | State | Repository |
---|---|---|---|
*Multi-Label Learning from Single Positive Labels | 改loss function | ✔️ | |
*Simple and Robust Loss Design for Multi-Label Learning with Missing Labels | 改loss function,加了Hill Loss, SPLC和focal margin | ✔️ | |
*Asymmetric Loss For Multi-Label Classification | classic,改loss function,提出ASL,对正负标签施加不同的focal weight | ✔️ | |
- model label correlation ( graph network )
Title | Description | State | Repository |
---|---|---|---|
Multi-Label Image Recognition with Joint Class-Aware Map Disentangling and Label Correlation Embedding | ❌ | ||
Multi-Label Image Recognition With Graph Convolutional Networks | ❌ |
- change model structure( backbone| head )
Title | Description | State | Repository |
---|---|---|---|
TResNet: High Performance GPU-Dedicated Architecture | 改loss function | ❌ | |
*Query2Label: A Simple Transformer Way to Multi-Label Classification | attention-based head,主要使用的是Transformer 的decoder部分,学习的是label embedding | ✔️ | |
ML-Decoder: Scalable and Versatile Classification Head | ✔️ | https://github.com/Alibaba-MIIL/ML_Decoder |
感觉和zero-shot learning 有点关系,因为zero-shot是从已知类中学习,预测未知类。
This is usually done by sharing knowledge between the seen classes (that were used for training) and the unseen classes via a text model.