Multi-label Research

Category

  1. 按文章目标(mainly based on The Emerging Trends of Multi-Label Learning
  • 综述类
Title Description State Repository
A Review On Multi-Label Learning Algorithms 周志华老师的,更多地关注于机器学习方法,8种常见模型 ✔️ None
The Emerging Trends of Multi-Label Learning Anchor,image-20221104210000301 ✔️ None
  • XMLC(Extreme multi-label learning)

    ⭐ one vs all.

    传统的就是针对每一个标签训练一个分类器,削弱了每个标签之间的关联性。

    可推荐阅读:

Title Description State Repository
DiSMEC - Distributed Sparse Machines for Extreme Multi-label Classification None
Deep Extreme Multi-label Learning
*ML-Decoder: Scalable and Versatile Classification Head 可以面向特别多标签的情况进行处理

​ :star: Tree

Title Description State Repository
Extreme F-measure maximization using sparse probability estimates None
A no-regret generalization of hierarchical softmax to extreme multi-label classification None
Fastxml: a fast, accurate and stable tree-classifier for extreme multi-label learning classic None

​ :star: Embedding

Title Description State Repository
Sparse local embeddings for extreme multi-label classification SLEEC,经典方法! None
Partial Multi-Label Learning by Low-Rank and Sparse Decomposition. None
Query2Label: A Simple Transformer Way to Multi-Label Classification Transformer的decoder学习label embedding,思路其实很简单,用一个Embedding层把它和backbone输出的channel数相match即可,backbone输出[2048,14,14]的feature map,2048是channel, 也是embedding,所以label的embedding大小也是2048。 ✔️ https://github.com/SlongLiu/query2labels
  • PML(Partial multi-label learning)
Title Description State Repository
Partial Multi-Label Learning classic None
Partial Multi-Label Learning with Label Distribution None
Partial Multi-Label Learning via Credible Label Elicitation None
  • SSMLC(semi-supervised MLC)

  • MLML(Multi-label learning with missing label)

Title Description State Repository
Asymmetric Loss For Multi-Label Classification classic,改loss function,提出ASL,对正负标签施加不同的focal weight ✔️ Alibaba-MIIL/ASL: Official Pytorch Implementation of: "Asymmetric Loss For Multi-Label Classification"(ICCV, 2021) paper (github.com)
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels 改loss function,加了Hill Loss, SPLC和focal margin ✔️ xinyu1205/robust-loss-mlml (github.com)
Learning a Deep ConvNet for Multi-label Classification with Partial Labels 多篇文章提到! None
  1. 按多标签分类中标签数量分类
  • single label
Title Description State Repository
Multi-Label Learning from Single Positive Labels 改loss function ✔️
Acknowledging the Unknown for Multi-label Learning with Single Positive Labels
  1. 按文章的改进方向
  • improve loss function

(注:标*的代表上面已有相同的item)

Title Description State Repository
*Multi-Label Learning from Single Positive Labels 改loss function ✔️
*Simple and Robust Loss Design for Multi-Label Learning with Missing Labels 改loss function,加了Hill Loss, SPLC和focal margin ✔️
*Asymmetric Loss For Multi-Label Classification classic,改loss function,提出ASL,对正负标签施加不同的focal weight ✔️
  • model label correlation ( graph network )
Title Description State Repository
Multi-Label Image Recognition with Joint Class-Aware Map Disentangling and Label Correlation Embedding
Multi-Label Image Recognition With Graph Convolutional Networks
  • change model structure( backbone| head )
Title Description State Repository
TResNet: High Performance GPU-Dedicated Architecture 改loss function
*Query2Label: A Simple Transformer Way to Multi-Label Classification attention-based head,主要使用的是Transformer 的decoder部分,学习的是label embedding ✔️
ML-Decoder: Scalable and Versatile Classification Head ✔️ https://github.com/Alibaba-MIIL/ML_Decoder

OOD:

感觉和zero-shot learning 有点关系,因为zero-shot是从已知类中学习,预测未知类。

This is usually done by sharing knowledge between the seen classes (that were used for training) and the unseen classes via a text model.