/HeLP2019_Breast_Cancer_1st_solution

1st place solution to the Breast Cancer Classification Task of HeLP Challenge 2019.

Primary LanguagePython

HeLP Challenge 2019 Breast Cancer 1st place solution

This repository is 1st place solution to the Breast Cancer Classification Task of HeLP Challenge 2019.
task_description

Model

model_description

Stage 1

  • Preprocessing: ROI extraction, Rescale, Vahadane Stain Normalization
  • Pixel-wise Segmentation: Feature Pyramid Network(FPN)

Stage 2

  • Feature extraction from probability heatmap
  • Prediction final probability and major axis based on features

And also, please click this link to see the detailed model description.

Dependencies

  • keras
  • segmentation_models
  • openslide
  • staintools
  • numpy
  • pandas
  • sklearn
  • skimage

Usage

Dataset

data
  └── train
     ├── level4
     │  ├── Image
     │  │  ├── slide_001.png
     │  │  ├── ...
     │  │  └── slide_#.png
     │  └── Mask
     │     ├── mask_001.png
     │	   ├── ...
     │	   └── mask_#.png
     └── label.csv
            
========= After training, the directories are created as below. =========

  ├── volume
  │  ├── dataset
  │  │  └── level4 
  │  │     ├── img
  │  │	   │  ├── slide001_patch001.png
  │  │ 	   │  ├── ...
  │  │     │  └── slide#_patch#.png
  │  │	   └── mask
  │  │	      ├── mask001_patch001.png
  │  │        ├── ...
  │  │        └── mask#_patch#.png
  │  └── model
  │       └── fpn_weights.h5
  └── heatmap
      ...

Train

Run the train.py.

$ python train.py

Inference

Run the inference.sh.

$ sh inference.sh

Authors