This repository is 1st place solution to the Breast Cancer Classification Task of HeLP Challenge 2019.
- Preprocessing: ROI extraction, Rescale, Vahadane Stain Normalization
- Pixel-wise Segmentation: Feature Pyramid Network(FPN)
- Feature extraction from probability heatmap
- Prediction final probability and major axis based on features
And also, please click this link to see the detailed model description.
- keras
- segmentation_models
- openslide
- staintools
- numpy
- pandas
- sklearn
- skimage
data
└── train
├── level4
│ ├── Image
│ │ ├── slide_001.png
│ │ ├── ...
│ │ └── slide_#.png
│ └── Mask
│ ├── mask_001.png
│ ├── ...
│ └── mask_#.png
└── label.csv
========= After training, the directories are created as below. =========
├── volume
│ ├── dataset
│ │ └── level4
│ │ ├── img
│ │ │ ├── slide001_patch001.png
│ │ │ ├── ...
│ │ │ └── slide#_patch#.png
│ │ └── mask
│ │ ├── mask001_patch001.png
│ │ ├── ...
│ │ └── mask#_patch#.png
│ └── model
│ └── fpn_weights.h5
└── heatmap
...
Run the train.py
.
$ python train.py
Run the inference.sh
.
$ sh inference.sh
- Daeyoung Kim / @cyc1am3n
- Taewoo Kim / @Taeu
- Jonghyun Choi / @ExcelsiorCJH