This repo contains the Pytorch implementation of our paper:
Self-supervised Mean Teacher for Semi-supervised Chest X-ray Classification
Fengbei Liu*, Yu Tian*, Filipe R. Cordeiro, Vasileios Belagiannis, Ian Reid, Gustavo Carneiro.
- Accepted at MICCAI MLMI2021 Workshop.
- Linux
- Python 3.8
- Pytorch 1.6
- Pretrain with 4 * V100 and finetune with 1 * V100
Download Chest Xray14 from https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345
Prepare the dataset and then run the following command for pretrain:
python pretrain.py --data <data_dir> --multiprocessing-distributed --world-size 1 --rank 0 --batch-size 256 --lr 0.03 --arch densenet121 --mlp --cos --task chestxray14 --dist-url tcp://localhost:10001 --jcl
For Fine-tuning, run
python finetune.py --pretrained <pretrain model dir>
If you find this repo useful for your research, please consider citing our paper:
@article{liu2021self,
title={Self-supervised Mean Teacher for Semi-supervised Chest X-ray Classification},
author={Liu, Fengbei and Tian, Yu and Cordeiro, Filipe R and Belagiannis, Vasileios and Reid, Ian and Carneiro, Gustavo},
journal={arXiv preprint arXiv:2103.03629},
year={2021}
}