This repo covers Team FDVTS_DR's solutions for MICCAI2022 Diabetic Retinopathy Analysis Challenge (DRAC).
We download the dataset from DRAC2022. For pre-training, we additionally adopt the OCTA-25K-IQA-SEG dataset in challenge 2, and the EyePACS & DDR datasets in challenge 3.
Please refer to challenge1 package
cd challenge2&3
train the OCTA-25K-IQA-SEG pre-trained vit-s model with mixup and cutmix
python main.py --challenge 2 --model vit --KK 0 [--pretrained True] [--mixup True] --visname 2_vit_mix_cut_KK0_pre
cd challenge2&3
train the EyePACS & DDR pre-trained vit-s model with mixup and cutmix
python main.py --challenge 3 --model vit --KK 0 [--pretrained True] [--mixup True] --visname 3_vit_mix_cut_KK0_pre
If you use this code, please cite the following paper [pdf]:
@article{hou2022deep,
title={Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy Analysis on OCTA Images},
author={Hou, Junlin and Xiao, Fan and Xu, Jilan and Zhang, Yuejie and Zou, Haidong and Feng, Rui},
journal={arXiv preprint arXiv:2210.00515},
year={2022}
}