Code for ICLR 2015 deeplab-v1 paper "Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs", backbone is deeplab-largeFOV.
- python 3.7 / pytorch 1.2.0
- pydensecrf
- opencv
- Pascal VOC 2012 Dataset
- extract 'VOCtrainval_11-May-2012.tar' to 'VOCdevkit/'
- Pascal VOC 2012 Augment Dataset
- I have download it, 'VOCdevkit/SegmentationClassAug.zip', you show extract it to 'VOCdevkit/VOC2012/ Finally, it should like this
/VOCdevkit
└── VOC2012
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationObject
└── SegmentationClass
└── SegmentationClassAug
Train set | Eval set | CRF? | Code | Pixel Accuracy |
Mean Accuracy |
Mean IoU | FreqW IoU |
---|---|---|---|---|---|---|---|
trainaug |
val | DeepLab-LargeFOV | - | - | 62.25 | - | |
Ours-step | 90.20 | 80.92 | 62.34 | 83.58 | |||
✓ | DeepLab-CRF-LargeFOV | - | - | 67.64 | - | ||
Ours-step | 92.23 | 79.99 | 67.58 | 86.32 |
Train set | Eval set | CRF? | Code | Pixel Accuracy |
Mean Accuracy |
Mean IoU | FreqW IoU |
---|---|---|---|---|---|---|---|
trainaug | val | Ours-step | 90.20 | 80.92 | 62.34 | 83.58 | |
Ours-poly | 91.24 | 80.29 | 64.838 | 85.00 | |||
Ours-poly2 | 91.35 | 81.61 | 65.44 | 85.26 | |||
✓ | Ours-step | 92.23 | 79.99 | 67.58 | 86.32 | ||
Ours-poly | 92.65 | 79.92 | 68.72 | 86.98 | |||
Ours-poly2 | 92.89 | 80.39 | 69.60 | 87.35 |
python main.py --type=train
without CRF
python main.py --type=test
with CRF
python main.py --type=test --use_crf
python evalate.py
-
Liang-Chieh Chen*, George Papandreou*, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. (*equal contribution). Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. ICLR, 2015.
Project / Code / arXiv paper