SI-LACMMT

Level-Aware Consistent Multi-level Map Translation From Satellite Imagery

Ying Fu, Zheng Fang, Linwei Chen, Tao Song, and Defu Lin

图片替换文本

1. Image2image translation and map generation methods

Method FID$\downarrow$ KMMD$\downarrow$ WD$\downarrow$ PSNR$\uparrow$ Model
Pix2pix 342.84 0.53236 16.267 20.726 Baidu Disk
Pix2pixHD 331.10 0.38806 14.358 20.908 Baidu Disk
CycleGAN 312.14 0.45603 14.692 20.725 Baidu Disk
SPADE 459.11 0.79792 20.047 20.468 Baidu Disk
SelectionGAN 337.83 0.58850 16.475 20.617 Baidu Disk
TSIT 284.17 0.43861 13.753 20.540 Baidu Disk
LPTN 351.61 0.4380 17.489 21.327 Baidu Disk
SMAPGAN 336.35 0.54771 16.338 $\bf{22.506}$ Baidu Disk
CreativeGAN 267.37 0.29931 12.453 21.428 Baidu Disk
SI-LACMMT $\bf{195.64}$ $\bf{0.23759}$ $\bf{11.014}$ 21.532 Baidu Disk
LAMG_MLMG - - - - Baidu Disk

2. Create Environment:

  • Python 3 (Recommend to use Anaconda)
  • NVIDIA GPU + CUDA
  • Python packages:
pip install -r requirements.txt

The advantages of our dataset over other datasets are as follows:

image-20221214203605415

Our data contains multiple types of images, and has multi-level data in the same area. In addition, we have balanced the data of each level to ensure the balance of training.

image-20221214203621871

The specific content of our data set is as shown above, including data from US and CN countries. The data volume of each level of training set is 2k. The test set is multi-level data in the same region, and the number of high-level data is four times that of low-level data.

following form:

|--MLMG Dataset
    |--US_dataset
    	|-- trainA(SI images)
    		|-- 15
    			|-- 15_26967_12413.jpg
    			|-- 15_26967_12415.jpg
    			:
                |-- 15_27091_12529.jpg
    		|-- 16
    		|-- 17
    		|-- 18
    	|-- trainB(Map images)
    	|-- trainC(2x downsample map images )
    	|-- train_seg(element labels)
    	|-- testA(SI images)
    	|-- testB(Map images)
    |--CN_dataset
    	|-- trainA
    	|-- trainB
    	|-- trainC
    	|-- train_seg
    	|-- testA
    	|-- testB

4. Experiement:

4.1 Training

  1. Download the dataset and move it to the dataset folder.
  2. Download the pretrained model and move it to src/LACMMT/.
  3. Execute the following command to train the corresponding model.
cd "root_path"
bash scripts/train_CreativeGAN.sh
bash scripts/train_LACMMT.sh
bash scripts/train_LAMG_MLMG.sh

4.2 Testing

  1. Download the test dataset and the pretrained model provided above.
  2. Configure the python environment according to the requests.txt.
  3. Download the dataset and move it to the dataset folder.
  4. Execute the following script to generate the multi-level map images.
cd "root_path"
bash scripts/test_LACMMT.sh
bash scripts/test_Pix2pix.sh
:
bash scripts/test_CreativeGAN.sh

5.Citation

@article{fu2022level,
  title={Level-Aware Consistent Multilevel Map Translation From Satellite Imagery},
  author={Fu, Ying and Fang, Zheng and Chen, Linwei and Song, Tao and Lin, Defu},
  journal={IEEE Transactions on Geoscience and Remote Sensing},
  volume={61},
  pages={1--14},
  year={2022},
  publisher={IEEE}
}
@article{chen2022consistency,
  title={Consistency-Aware Map Generation at Multiple Zoom Levels Using Aerial Image},
  author={Chen, Linwei and Fang, Zheng and Fu, Ying},
  journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
  volume={15},
  pages={5953--5966},
  year={2022},
  publisher={IEEE}
}
@article{FZ_transformer,
  title={Transformer特征引导的双阶段地图智能生成},
  author={方政 and 付莹 and 刘利雄}
}

6.News ✨

  • 2023-1-1: release train code for CreativeGAN, LAMG_MLMG, and LACMMT.
  • 2022-12-18: release test code.
  • 2022-8-30: release dataset.