/hierarchicalclassification

Master thesis work: Exploring hierarchical label structure for better classification of drivers of tropical deforestation

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0

hierarchicalclassification

The current directory provides the code necessary to reproduce the results from my Master Thesis report. For any addtional question, send me an email: fadel.seydou@gmail.com.

Installing dependencies

  • Open a terminal on Linux or a Anaconda command prompt on Windows
  • Clone this repository
  • Move to the repository with cd ./hierarchicalclassification
  • Create a virtual environment
    • python -m venv .venv
  • Activate a virtual environment
    • For Linux: source ../.venv/bin/activate
    • For Windows: .venv\bin\activate.bat
  • Install dependencies
    • pip install -r requirements.txt

Project workflow

  • Open the jupyter notebook: ./src/data_exploration.ipynb
  • It will explain the general workflow and hypothesis behind the data prepration.

Data preparation

Training

  • In the terminal, move to ./src
  • Create a free account on weight&biases to log training metrics
  • Initialize weight&biases in this working directory as follows: wandb login and provide API key.
  • Open train.sh and update the parameters. All parameters are explained in args.py
  • Run bash train.sh