/SCAGE

Code for SCAGE

Primary LanguagePython

SCAGE

What is SCAGE?

SCAGE is a self-conformation-aware pre-training framework for molecular property prediction reveals the quantitate structure-activity relationship like human experts

Reference paper

Some command lines

You can directly use the following command lines to run the code in bash script.

CUDA_VISIBLE_DEVICES=1 nohup python pretrain.py > ./pretrain_log/pretrain1.log 2>&1 &

0. Fix some bugs

export LD_LIBRARY_PATH="/home2/s439850/anaconda3/envs/SAGE/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="/home2/s439850/anaconda3/envs/SAGEHH/lib:$LD_LIBRARY_PATH"

1. Pre-training

CUDA_VISIBLE_DEVICES=3 python pretrain.py
python -m torch.distributed.launch --nproc_per_node=4 pretrain_dis.py

2. Fine-tuning

unset http_proxy
unset https_proxy
nnictl create --config ./config.yaml -p 3325

experimental results

tencent document link

close nni and then view it again

nnictl stop --port 3329
nnictl stop -a
nnictl view omFiEsra --port 3328 -e /archive/bioinformatics/Zhou_lab/shared/jjin/SCAGE/log

1. fintune on no pretrain

img.png

some other results

img_1.png

img_2.png

img_3.png

2. fintune on no pretrain with pretrain parameters

img.png

Some conclusions:

  • Choose dist bar as [1,2,3]
  • Choose dropout to 0.3/0.4
  • Choose number encoder 4
  • Choose number layer 4