/multiagent_mujoco

Benchmark for Continuous Multi-Agent Robotic Control, based on OpenAI's Mujoco Gym environments.

Primary LanguagePython

+ New Addition: Multi-Agent Mujoco now supports Scenarios with Coupled Robots (using Tendons). 
+ Check out instructions below.
-  Please contact Christian Schroeder de Witt at cs@robots.ox.ac.uk for any questions
-  Issues? Please file them here. Thanks :)

Multi-Agent Mujoco

Benchmark for Continuous Multi-Agent Robotic Control, based on OpenAI's Mujoco Gym environments.

Described in the paper Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control by Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer and Shimon Whiteson, Torr Vision Group and Whiteson Research Lab, University of Oxford, 2020

Installation

Note: You require OpenAI Gym Version 10.8.0 and Mujoco 2.0

Simply clone this repository and put ./src on your PYTHONPATH. To render, please also set the following environment variables:

LD_LIBRARY_PATH=${HOME}/.mujoco/mujoco200/bin;
LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so

Example

from src.multiagent_mujoco.mujoco_multi import MujocoMulti
import numpy as np
import time


def main():
    env_args = {"scenario": "HalfCheetah-v2",
                  "agent_conf": "2x3",
                  "agent_obsk": 0,
                  "episode_limit": 1000}
    env = MujocoMulti(env_args=env_args)
    env_info = env.get_env_info()

    n_actions = env_info["n_actions"]
    n_agents = env_info["n_agents"]
    n_episodes = 10

    for e in range(n_episodes):
        env.reset()
        terminated = False
        episode_reward = 0

        while not terminated:
            obs = env.get_obs()
            state = env.get_state()

            actions = []
            for agent_id in range(n_agents):
                avail_actions = env.get_avail_agent_actions(agent_id)
                avail_actions_ind = np.nonzero(avail_actions)[0]
                action = np.random.uniform(-1.0, 1.0, n_actions)
                actions.append(action)

            reward, terminated, _ = env.step(actions)
            episode_reward += reward

            time.sleep(0.1)
            env.render()


        print("Total reward in episode {} = {}".format(e, episode_reward))

    env.close()

if __name__ == "__main__":
    main()

Documentation

Environment config

  • env_args.scenario: Determines the underlying single-agent OpenAI Gym Mujoco environment
  • env_args.agent_conf: Determines the partitioning (see in Environment section below), fixed by n_agents x motors_per_agent
  • env_args.agent_obsk: Determines up to which connection distance k agents will be able to form observations (0: agents can only observe the state of their own joints and bodies, 1: agents can observe their immediate neighbour's joints and bodies).
  • env_args.k_categories: A string describing which properties are observable at which connection distance as comma-separated lists separated by vertical bars. For example, "qpos,qvel,cfrc_ext,cvel,cinert,qfrc_actuator|qpos" means k=0 can observe properties qpos,qvel,cfrc_ext,cvel,cinert,qfrc_actuator and k>=1 (i.e. immediate and more distant neighbours) can be observed through property qpos. Note: If a property requested is not available for a given agent, it will be silently omitted.
  • env_args.global_categories: Same as env_args.k_categories, but concerns some global properties that are otherwise not observed by any of the agents. Switched off by default (i.e. agents have no non-local observations).

Extending Tasks

Tasks can be trivially extended by adding entries in src/multiagent_mujoco/obsk.py.

Task configuration

Unless stated otherwise, all the parameters given below are to be used with .multiagent_mujoco.MujocoMulti.

2-Agent Ant

env_args.scenario="Ant-v2"
env_args.agent_conf="2x4"
env_args.agent_obsk=1

2-Agent Ant Diag

env_args.scenario="Ant-v2"
env_args.agent_conf="2x4d"
env_args.agent_obsk=1

4-Agent Ant

env_args.scenario="Ant-v2"
env_args.agent_conf="4x2"
env_args.agent_obsk=1

2-Agent HalfCheetah

env_args.scenario="HalfCheetah-v2"
env_args.agent_conf="2x3"
env_args.agent_obsk=1

6-Agent HalfCheetah

env_args.scenario="HalfCheetah-v2"
env_args.agent_conf="6x1"
env_args.agent_obsk=1

3-Agent Hopper

env_args.scenario="Hopper-v2"
env_args.agent_conf="3x1"
env_args.agent_obsk=1

2-Agent Humanoid

env_args.scenario="Humanoid-v2"
env_args.agent_conf="9|8"
env_args.agent_obsk=1

2-Agent HumanoidStandup

env_args.scenario="HumanoidStandup-v2"
env_args.agent_conf="9|8"
env_args.agent_obsk=1

2-Agent Reacher

env_args.scenario="Reacher-v2"
env_args.agent_conf="2x1"
env_args.agent_obsk=1

2-Agent Swimmer

env_args.scenario="Swimmer-v2"
env_args.agent_conf="2x1"
env_args.agent_obsk=1

2-Agent Walker

env_args.scenario="Walker2d-v2"
env_args.agent_conf="2x3
env_args.agent_obsk=1

Manyagent Swimmer

env_args.scenario="manyagent_swimmer"
env_args.agent_conf="2x3
env_args.agent_obsk=1

Manyagent Ant

env_args.scenario="manyagent_ant"
env_args.agent_conf="2x3
env_args.agent_obsk=1

Coupled HalfCheetah (NEW!)

env_args.scenario="coupled_half_cheetah"
env_args.agent_conf="2x3
env_args.agent_obsk=1

CoupledHalfCheetah features two separate HalfCheetah agents coupled by an elastic tendon. You can add more tendons or novel coupled scenarios by

  1. Creating a new Gym environment to define the reward function of the coupled scenario (consult coupled_half_cheetah.py)
  2. Create a new Mujoco environment XML file to insert agents and tendons (see assets/coupled_half_cheetah.xml)
  3. Register your env as a scenario in the MujocoMulti environment (only if you need special default observability params)