项目以推荐系统建设领域知名的经过修改过的MovieLens数据集作为依托,以电影网站真实业务数据架构为基础,包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。提供了从前端应用、后台服务、算法设计实现、平台部署等多方位的闭环的业务实现
- 离线推荐服务:离线推荐业务采用Spark Core +Spark MLlib进行实现,采用ALS算法进行实现。
- 工作调度服务:对于离线推荐部分需要以一定的时间频率对算法进行调度,采用Azkaban进行任务的调度。
- 消息缓冲服务:项目采用Kafka作为流式数据的缓存组件,接受来自Flume的数据采集请求。并将数据推送到项目的实时推荐系统部分。
- 实时推荐服务:项目采用Spark Streaming作为实时推荐系统,通过接收Kafka中缓存的数据,通过设计的推荐算法实现对实时推荐的数据处理,并将结构合并更新到MongoDB数据库
- 通过SparkSQL将系统初始化数据加载到MongoDB和ElasticSearch中。
- 通过Azkaban实现对于离线统计服务以离线推荐服务的调度,通过设定的运行时间完成对任务的触发执行。
- 离线统计服务从MongoDB中加载数据,将【电影平均评分统计】、【电影评分个数统计】、【最近电影评分个数统计】三个统计算法进行运行实现,并将计算结果回写到MongoDB中;离线推荐服务从MongoDB中加载数据,通过ALS算法分别将【用户推荐结果矩阵】、【影片相似度矩阵】回写到MongoDB中。
- Flume从综合业务服务的运行日志中读取日志更新,并将更新的日志实时推送到Kafka中;Kafka在收到这些日志之后,通过kafkaStream程序对获取的日志信息进行过滤处理,获取用户评分数据流【UID|MID|SCORE|TIMESTAMP】,并发送到另外一个Kafka队列;SparkStreaming监听Kafka队列,实时获取Kafka过滤出来的用户评分数据流,融合存储在Redis中的用户最近评分队列数据,提交给实时推荐算法,完成对用户新的推荐结果计算;计算完成之后,将新的推荐结构和MongDB数据库中的推荐结果进行合并。
- 推荐结果展示部分,从MongoDB、ElasticSearch中将离线推荐结果、实时推荐结果、内容推荐结果进行混合,综合给出相对应的数据。
- 电影信息查询服务通过对接MongoDB实现对电影信息的查询操作。6.电影评分部分,获取用户通过UI给出的评分动作,后台服务进行数据库记录后,一方面将数据推动到Redis群中,另一方面,通过预设的日志框架输出到Tomcat中的日志中。7.项目通过ElasticSearch实现对电影的模糊检索。8.电影标签部分,项目提供用户对电影打标签服务
- CentoOS-7.2
- JDK-1.8
- Spark-2.11.8
- Scala-2.11.8
- Zookeeper-3.4.10
- Kafka-2.11-0.11.0.0
- Redis-3.0.4
- MongoDB-4.4.1
- ElasticEsarch-5.6.2
- Flume-1.7.0
- IDEA-2020