We provide the implementaion of SOLT-GIN based on the official PyTorch implementation of GIN(https://github.com/weihua916/powerful-gnns)
The repository is organised as follows:
- dataset/: the original data and sampled subgraphs of five benchmark dataset.
- main.py: tail graph classificaiton of SOLT-GIN.
- gin.py: base GIN model.
- PatternMemory.py: implementation of pattern memory.
- utils.py: contains tool functions for loading the data and data split.
- subgraph_sample.py: contains codes of subgraph sampling.
- Python-3.8.5
- Pytorch-1.8.1
- Networkx-2.4
- numpy-1.18.1
We train our model using NVIDIA GeForce RTX 1080 GPU with CUDA 11.0.
please firstly run subgraph_sample.py to complete the subgraph sampling process before running the main.py:
- python subgraph_sample.py
For tail graph classification:
- python main.py --dataset PTC --alpha 0.3 --mu1 1.5 --mu2 1.5
- python main.py --dataset PROTEINS --alpha 0.15 --mu1 2 --mu2 2
- python main.py --dataset DD --alpha 0.05 --mu1 2 --mu2 2
- python main.py --dataset FRANK --alpha 0.1 --mu1 2 --mu2 0
- python main.py --dataset IMDBBINARY --alpha 0.15 --mu1 0.5 --mu2 2
For reproducing our results in the paper, you need to tune the values of key parameters like