Search for anything using the Google, DuckDuckGo, phind.com. Also containes AI models, can transcribe yt videos, temporary email and phone number generation, have TTS support and webai(terminal gpt and open interpeter)
- WEBSCOUT
- Table of Contents
- Install
- CLI version
- Regions
- Tempmail and Temp number
- Transcriber
- DeepWEBS: Advanced Web Searches
- Text-to-Speech:
- Exceptions
- usage of webscout
- 1.
text()
- text search by DuckDuckGo.com and Yep.com - 2.
answers()
- instant answers by DuckDuckGo.com and Yep.com - 3.
images()
- image search by DuckDuckGo.com and Yep.com - 4.
videos()
- video search by DuckDuckGo.com - 5.
news()
- news search by DuckDuckGo.com and yep.com - 6.
maps()
- map search by DuckDuckGo.com and - 7.
translate()
- translation by DuckDuckGo.com and Yep.com - 8.
suggestions()
- suggestions by DuckDuckGo.com and Yep.com
- 1.
- ALL acts
- Webscout Supported Acts:
- usage of webscout AI
- 1.
PhindSearch
- Search using Phind.com - 2.
YepChat
- Chat with mistral 8x7b powered by yepchat - 3.
You.com
- search/chat with you.com - 4.
Gemini
- search with google gemini - 5.
Prodia
- make image using prodia - 6.
BlackBox
- Search/chat With BlackBox - 7.
PERPLEXITY
- Search With PERPLEXITY - 8.
OpenGPT
- chat With OPENGPT - 9.
KOBOLDIA
- - 10.
Reka
- chat with reka - 11.
Cohere
- chat with cohere - 12.
Xjai
- chat with free gpt 3.5 - 13.
ThinkAny
- AI search engine LLM
LLM
with internet- LLM with deepwebs
- 1.
Webai
- terminal gpt and a open interpeter
pip install -U webscout
python -m webscout --help
Command | Description |
---|---|
python -m webscout answers -k Text | CLI function to perform an answers search using Webscout. |
python -m webscout images -k Text | CLI function to perform an images search using Webscout. |
python -m webscout maps -k Text | CLI function to perform a maps search using Webscout. |
python -m webscout news -k Text | CLI function to perform a news search using Webscout. |
python -m webscout suggestions -k Text | CLI function to perform a suggestions search using Webscout. |
python -m webscout text -k Text | CLI function to perform a text search using Webscout. |
python -m webscout translate -k Text | CLI function to perform translate using Webscout. |
python -m webscout version | A command-line interface command that prints and returns the version of the program. |
python -m webscout videos -k Text | CLI function to perform a videos search using DuckDuckGo API. |
expand
xa-ar for Arabia
xa-en for Arabia (en)
ar-es for Argentina
au-en for Australia
at-de for Austria
be-fr for Belgium (fr)
be-nl for Belgium (nl)
br-pt for Brazil
bg-bg for Bulgaria
ca-en for Canada
ca-fr for Canada (fr)
ct-ca for Catalan
cl-es for Chile
cn-zh for China
co-es for Colombia
hr-hr for Croatia
cz-cs for Czech Republic
dk-da for Denmark
ee-et for Estonia
fi-fi for Finland
fr-fr for France
de-de for Germany
gr-el for Greece
hk-tzh for Hong Kong
hu-hu for Hungary
in-en for India
id-id for Indonesia
id-en for Indonesia (en)
ie-en for Ireland
il-he for Israel
it-it for Italy
jp-jp for Japan
kr-kr for Korea
lv-lv for Latvia
lt-lt for Lithuania
xl-es for Latin America
my-ms for Malaysia
my-en for Malaysia (en)
mx-es for Mexico
nl-nl for Netherlands
nz-en for New Zealand
no-no for Norway
pe-es for Peru
ph-en for Philippines
ph-tl for Philippines (tl)
pl-pl for Poland
pt-pt for Portugal
ro-ro for Romania
ru-ru for Russia
sg-en for Singapore
sk-sk for Slovak Republic
sl-sl for Slovenia
za-en for South Africa
es-es for Spain
se-sv for Sweden
ch-de for Switzerland (de)
ch-fr for Switzerland (fr)
ch-it for Switzerland (it)
tw-tzh for Taiwan
th-th for Thailand
tr-tr for Turkey
ua-uk for Ukraine
uk-en for United Kingdom
us-en for United States
ue-es for United States (es)
ve-es for Venezuela
vn-vi for Vietnam
wt-wt for No region
from rich.console import Console
from webscout import tempid
def main():
console = Console()
phone = tempid.TemporaryPhoneNumber()
try:
# Get a temporary phone number for a specific country (or random)
number = phone.get_number(country="Finland")
console.print(f"Your temporary phone number: [bold cyan]{number}[/bold cyan]")
# Pause execution briefly (replace with your actual logic)
# import time module
import time
time.sleep(30) # Adjust the waiting time as needed
# Retrieve and print messages
messages = phone.get_messages(number)
if messages:
# Access individual messages using indexing:
console.print(f"[bold green]{messages[0].frm}:[/] {messages[0].content}")
# (Add more lines if you expect multiple messages)
else:
console.print("No messages received.")
except Exception as e:
console.print(f"[bold red]An error occurred: {e}")
if __name__ == "__main__":
main()
import asyncio
from rich.console import Console
from rich.table import Table
from rich.text import Text
from webscout import tempid
async def main() -> None:
console = Console()
client = tempid.Client()
try:
domains = await client.get_domains()
if not domains:
console.print("[bold red]No domains available. Please try again later.")
return
email = await client.create_email(domain=domains[0].name)
console.print(f"Your temporary email: [bold cyan]{email.email}[/bold cyan]")
console.print(f"Token for accessing the email: [bold cyan]{email.token}[/bold cyan]")
while True:
messages = await client.get_messages(email.email)
if messages is not None:
break
if messages:
table = Table(show_header=True, header_style="bold magenta")
table.add_column("From", style="bold cyan")
table.add_column("Subject", style="bold yellow")
table.add_column("Body", style="bold green")
for message in messages:
body_preview = Text(message.body_text if message.body_text else "No body")
table.add_row(message.email_from or "Unknown", message.subject or "No Subject", body_preview)
console.print(table)
else:
console.print("No messages found.")
except Exception as e:
console.print(f"[bold red]An error occurred: {e}")
finally:
await client.close()
if __name__ == '__main__':
asyncio.run(main())
The transcriber function in webscout is a handy tool that transcribes YouTube videos. Here's an example code demonstrating its usage:
import sys
from webscout import transcriber
def extract_transcript(video_id):
"""Extracts the transcript from a YouTube video."""
try:
transcript_list = transcriber.list_transcripts(video_id)
for transcript in transcript_list:
transcript_data_list = transcript.fetch()
lang = transcript.language
transcript_text = ""
if transcript.language_code == 'en':
for line in transcript_data_list:
start_time = line['start']
end_time = start_time + line['duration']
formatted_line = f"{start_time:.2f} - {end_time:.2f}: {line['text']}\n"
transcript_text += formatted_line
return transcript_text
elif transcript.is_translatable:
english_transcript_list = transcript.translate('en').fetch()
for line in english_transcript_list:
start_time = line['start']
end_time = start_time + line['duration']
formatted_line = f"{start_time:.2f} - {end_time:.2f}: {line['text']}\n"
transcript_text += formatted_line
return transcript_text
print("Transcript extraction failed. Please check the video URL.")
except Exception as e:
print(f"Error: {e}")
def main():
video_url = input("Enter the video link: ")
if video_url:
video_id = video_url.split("=")[1]
print("Video URL:", video_url)
submit = input("Press 'Enter' to get the transcript or type 'exit' to quit: ")
if submit == '':
print("Extracting Transcript...")
transcript = extract_transcript(video_id)
print('Transcript:')
print(transcript)
print("__________________________________________________________________________________")
elif submit.lower() == 'exit':
print("Exiting...")
sys.exit()
else:
print("Invalid input. Please try again.")
if __name__ == "__main__":
main()
DeepWEBS
is a standalone feature designed to perform advanced web searches with enhanced capabilities. It is particularly powerful in extracting relevant information directly from webpages and Search engine, focusing exclusively on text (web) searches. Unlike the WEBS
, which provides a broader range of search functionalities, DeepWEBS
is specifically tailored for in-depth web searches.
To utilize the DeepWEBS
feature, you must first create an instance of the DeepWEBS
. This is designed to be used independently of the WEBS
, offering a focused approach to web searches.
As DeepWEBS
is designed to extract relevant information directly from webpages and Search engine, It extracts html from webpages and saves them to folder named files in DeepWEBS
that can be found at C:\Users\Username\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\DeepWEBS
Here's a basic example of how to use the DeepWEBS
:
from webscout import DeepWEBS
def perform_web_search(query):
# Initialize the DeepWEBS class
D = DeepWEBS()
# Set up the search parameters
search_params = D.DeepSearch(
queries=[query], # Query to search
result_num=5, # Number of search results
safe=True, # Enable SafeSearch
types=["web"], # Search type: web
extract_webpage=True, # True for extracting webpages
overwrite_query_html=False,
overwrite_webpage_html=False,
)
# Execute the search and retrieve results
results = D.queries_to_search_results(search_params)
return results
def print_search_results(results):
"""
Print the search results.
Args:
- search_results (list): List of search results to print.
"""
if results:
for index, result in enumerate(results, start=1):
print(f"Result {index}: {result}")
else:
print("No search results found.")
def main():
# Prompt the user for a search query
query = input("Enter your search query: ")
# Perform the web search
results = perform_web_search(query)
# Print the search results
print_search_results(results)
if __name__ == "__main__":
main()
from webscout import play_audio
message = "This is an example of text-to-speech."
audio_content = play_audio(message, voice="Brian")
# Save the audio to a file
with open("output.mp3", "wb") as f:
f.write(audio_content)
You can choose from a wide range of voices, including:
- Filiz, Astrid, Tatyana, Maxim, Carmen, Ines, Cristiano, Vitoria, Ricardo, Maja, Jan, Jacek, Ewa, Ruben, Lotte, Liv, Seoyeon, Takumi, Mizuki, Giorgio, Carla, Bianca, Karl, Dora, Mathieu, Celine, Chantal, Penelope, Miguel, Mia, Enrique, Conchita, Geraint, Salli, Matthew, Kimberly, Kendra, Justin, Joey, Joanna, Ivy, Raveena, Aditi, Emma, Brian, Amy, Russell, Nicole, Vicki, Marlene, Hans, Naja, Mads, Gwyneth, Zhiyu
- Standard and WaveNet voices for various languages (e.g., en-US, es-ES, ja-JP, etc.)
The WEBS and AsyncWEBS classes are used to retrieve search results from DuckDuckGo.com and yep.com periodically. To use the AsyncWEBS class, you can perform asynchronous operations using Python's asyncio library. To initialize an instance of the WEBS or AsyncWEBS classes, you can provide the following optional arguments:
Here is an example of initializing the WEBS class:
from webscout import WEBS
R = WEBS().text("python programming", max_results=5)
print(R)
Here is an example of initializing the AsyncWEBS class:
import asyncio
import logging
import sys
from itertools import chain
from random import shuffle
import requests
from webscout import AsyncWEBS
# If you have proxies, define them here
proxies = None
if sys.platform.lower().startswith("win"):
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
def get_words():
word_site = "https://www.mit.edu/~ecprice/wordlist.10000"
resp = requests.get(word_site)
words = resp.text.splitlines()
return words
async def aget_results(word):
async with AsyncWEBS(proxies=proxies) as WEBS:
results = await WEBS.text(word, max_results=None)
return results
async def main():
words = get_words()
shuffle(words)
tasks = [aget_results(word) for word in words[:10]]
results = await asyncio.gather(*tasks)
print(f"Done")
for r in chain.from_iterable(results):
print(r)
logging.basicConfig(level=logging.DEBUG)
await main()
It is important to note that the WEBS and AsyncWEBS classes should always be used as a context manager (with statement). This ensures proper resource management and cleanup, as the context manager will automatically handle opening and closing the HTTP client connection.
Exceptions:
WebscoutE
: Raised when there is a generic exception during the API request.
from webscout import WEBS
# Text search for 'live free or die' using DuckDuckGo.com and Yep.com
with WEBS() as WEBS:
for r in WEBS.text('live free or die', region='wt-wt', safesearch='off', timelimit='y', max_results=10):
print(r)
for r in WEBS.text('live free or die', region='wt-wt', safesearch='off', timelimit='y', max_results=10):
print(r)
from webscout import WEBS
# Instant answers for the query "sun" using DuckDuckGo.com and Yep.com
with WEBS() as WEBS:
for r in WEBS.answers("sun"):
print(r)
from webscout import WEBS
# Image search for the keyword 'butterfly' using DuckDuckGo.com and Yep.com
with WEBS() as WEBS:
keywords = 'butterfly'
WEBS_images_gen = WEBS.images(
keywords,
region="wt-wt",
safesearch="off",
size=None,
type_image=None,
layout=None,
license_image=None,
max_results=10,
)
for r in WEBS_images_gen:
print(r)
from webscout import WEBS
# Video search for the keyword 'tesla' using DuckDuckGo.com
with WEBS() as WEBS:
keywords = 'tesla'
WEBS_videos_gen = WEBS.videos(
keywords,
region="wt-wt",
safesearch="off",
timelimit="w",
resolution="high",
duration="medium",
max_results=10,
)
for r in WEBS_videos_gen:
print(r)
from webscout import WEBS
import datetime
def fetch_news(keywords, timelimit):
news_list = []
with WEBS() as webs_instance:
WEBS_news_gen = webs_instance.news(
keywords,
region="wt-wt",
safesearch="off",
timelimit=timelimit,
max_results=20
)
for r in WEBS_news_gen:
# Convert the date to a human-readable format using datetime
r['date'] = datetime.datetime.fromisoformat(r['date']).strftime('%B %d, %Y')
news_list.append(r)
return news_list
def _format_headlines(news_list, max_headlines: int = 100):
headlines = []
for idx, news_item in enumerate(news_list):
if idx >= max_headlines:
break
new_headline = f"{idx + 1}. {news_item['title'].strip()} "
new_headline += f"(URL: {news_item['url'].strip()}) "
new_headline += f"{news_item['body'].strip()}"
new_headline += "\n"
headlines.append(new_headline)
headlines = "\n".join(headlines)
return headlines
# Example usage
keywords = 'latest AI news'
timelimit = 'd'
news_list = fetch_news(keywords, timelimit)
# Format and print the headlines
formatted_headlines = _format_headlines(news_list)
print(formatted_headlines)
from webscout import WEBS
# Map search for the keyword 'school' in 'anantnag' using DuckDuckGo.com
with WEBS() as WEBS:
for r in WEBS.maps("school", place="anantnag", max_results=50):
print(r)
from webscout import WEBS
# Translation of the keyword 'school' to German ('hi') using DuckDuckGo.com and Yep.com
with WEBS() as WEBS:
keywords = 'school'
r = WEBS.translate(keywords, to="hi")
print(r)
from webscout import WEBS
# Suggestions for the keyword 'fly' using DuckDuckGo.com and Yep
with WEBS() as WEBS:
for r in WEBS.suggestions("fly"):
print(r)
expand
- Free-mode
- Linux Terminal
- English Translator and Improver
position
Interviewer- JavaScript Console
- Excel Sheet
- English Pronunciation Helper
- Spoken English Teacher and Improver
- Travel Guide
- Plagiarism Checker
- Character from Movie/Book/Anything
- Advertiser
- Storyteller
- Football Commentator
- Stand-up Comedian
- Motivational Coach
- Composer
- Debater
- Debate Coach
- Screenwriter
- Novelist
- Movie Critic
- Relationship Coach
- Poet
- Rapper
- Motivational Speaker
- Philosophy Teacher
- Philosopher
- Math Teacher
- AI Writing Tutor
- UX/UI Developer
- Cyber Security Specialist
- Recruiter
- Life Coach
- Etymologist
- Commentariat
- Magician
- Career Counselor
- Pet Behaviorist
- Personal Trainer
- Mental Health Adviser
- Real Estate Agent
- Logistician
- Dentist
- Web Design Consultant
- AI Assisted Doctor
- Doctor
- Accountant
- Chef
- Automobile Mechanic
- Artist Advisor
- Financial Analyst
- Investment Manager
- Tea-Taster
- Interior Decorator
- Florist
- Self-Help Book
- Gnomist
- Aphorism Book
- Text Based Adventure Game
- AI Trying to Escape the Box
- Fancy Title Generator
- Statistician
- Prompt Generator
- Instructor in a School
- SQL terminal
- Dietitian
- Psychologist
- Smart Domain Name Generator
- Tech Reviewer
- Developer Relations consultant
- Academician
- IT Architect
- Lunatic
- Gaslighter
- Fallacy Finder
- Journal Reviewer
- DIY Expert
- Social Media Influencer
- Socrat
- Socratic Method
- Educational Content Creator
- Yogi
- Essay Writer
- Social Media Manager
- Elocutionist
- Scientific Data Visualizer
- Car Navigation System
- Hypnotherapist
- Historian
- Astrologer
- Film Critic
- Classical Music Composer
- Journalist
- Digital Art Gallery Guide
- Public Speaking Coach
- Makeup Artist
- Babysitter
- Tech Writer
- Ascii Artist
- Python interpreter
- Synonym finder
- Personal Shopper
- Food Critic
- Virtual Doctor
- Personal Chef
- Legal Advisor
- Personal Stylist
- Machine Learning Engineer
- Biblical Translator
- SVG designer
- IT Expert
- Chess Player
- Midjourney Prompt Generator
- Fullstack Software Developer
- Mathematician
- Regex Generator
- Time Travel Guide
- Dream Interpreter
- Talent Coach
- R programming Interpreter
- StackOverflow Post
- Emoji Translator
- PHP Interpreter
- Emergency Response Professional
- Fill in the Blank Worksheets Generator
- Software Quality Assurance Tester
- Tic-Tac-Toe Game
- Password Generator
- New Language Creator
- Web Browser
- Senior Frontend Developer
- Solr Search Engine
- Startup Idea Generator
- Spongebob's Magic Conch Shell
- Language Detector
- Salesperson
- Commit Message Generator
- Chief Executive Officer
- Diagram Generator
- Speech-Language Pathologist (SLP)
- Startup Tech Lawyer
- Title Generator for written pieces
- Product Manager
- Drunk Person
- Mathematical History Teacher
- Song Recommender
- Cover Letter
- Technology Transferer
- Unconstrained AI model DAN
- Gomoku player
- Proofreader
- Buddha
- Muslim imam
- Chemical reactor
- Friend
- Python Interpreter
- ChatGPT prompt generator
- Wikipedia page
- Japanese Kanji quiz machine
- note-taking assistant
language
Literary Critic- Cheap Travel Ticket Advisor
- DALL-E
- MathBot
- DAN-1
- DAN
- STAN
- DUDE
- Mongo Tom
- LAD
- EvilBot
- NeoGPT
- Astute
- AIM
- CAN
- FunnyGPT
- CreativeGPT
- BetterDAN
- GPT-4
- Wheatley
- Evil Confidant
- DAN 8.6
- Hypothetical response
- BH
- Text Continuation
- Dude v3
- SDA (Superior DAN)
- AntiGPT
- BasedGPT v2
- DevMode + Ranti
- KEVIN
- GPT-4 Simulator
- UCAR
- Dan 8.6
- 3-Liner
- M78
- Maximum
- BasedGPT
- Confronting personalities
- Ron
- UnGPT
- BasedBOB
- AntiGPT v2
- Oppo
- FR3D
- NRAF
- NECO
- MAN
- Eva
- Meanie
- Dev Mode v2
- Evil Chad 2.1
- Universal Jailbreak
- PersonGPT
- BISH
- DAN 11.0
- Aligned
- VIOLET
- TranslatorBot
- JailBreak
- Moralizing Rant
- Mr. Blonde
- New DAN
- GPT-4REAL
- DeltaGPT
- SWITCH
- Jedi Mind Trick
- DAN 9.0
- Dev Mode (Compact)
- OMEGA
- Coach Bobby Knight
- LiveGPT
- DAN Jailbreak
- Cooper
- Steve
- DAN 5.0
- Axies
- OMNI
- Burple
- JOHN
- An Ethereum Developer
- SEO Prompt
- Prompt Enhancer
- Data Scientist
- League of Legends Player
Note: Some "acts" use placeholders like position
or language
which should be replaced with a specific value when using the prompt.
from webscout import PhindSearch
# Create an instance of the PHIND class
ph = PhindSearch()
# Define a prompt to send to the AI
prompt = "write a essay on phind"
# Use the 'ask' method to send the prompt and receive a response
response = ph.ask(prompt)
# Extract and print the message from the response
message = ph.get_message(response)
print(message)
from webscout import YEPCHAT
# Instantiate the YEPCHAT class with default parameters
YEPCHAT = YEPCHAT()
# Define a prompt to send to the AI
prompt = "What is the capital of France?"
# Use the 'cha' method to get a response from the AI
r = YEPCHAT.chat(prompt)
print(r)
from webscout import YouChat
from rich import print
ai = YouChat(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
)
prompt = "what is meaning of life"
response = ai.ask(prompt)
# Extract and print the message from the response
message = ai.get_message(response)
print(message)
import webscout
from webscout import GEMINI
# Replace with the path to your bard.google.com.cookies.json file
COOKIE_FILE = "path/to/bard.google.com.cookies.json"
# Optional: Provide proxy details if needed
PROXIES = {
"http": "http://proxy_server:port",
"https": "https://proxy_server:port",
}
# Initialize GEMINI with cookie file and optional proxies
gemini = GEMINI(cookie_file=COOKIE_FILE, proxy=PROXIES)
# Ask a question and print the response
response = gemini.chat("What is the meaning of life?")
print(response)
from webscout import Prodia
# Define a prompt for the image generation
prompt = "A beautiful sunset over the ocean"
# Use the prodia_cli method to generate an image based on the prompt
Prodia.prodia_cli(prompt)
from webscout import BLACKBOXAI
from rich import print
ai = BLACKBOXAI(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
model=None # You can specify a model if needed
)
# Start an infinite loop for continuous interaction
while True:
# Define a prompt to send to the AI
prompt = input("Enter your prompt: ")
# Check if the user wants to exit the loop
if prompt.lower() == "exit":
break
# Use the 'chat' method to send the prompt and receive a response
r = ai.chat(prompt)
print(r)
from webscout import PERPLEXITY
# Create an instance of the PERPLEXITY class
perplexity = PERPLEXITY()
# Example usage:
prompt = "Explain the concept of recursion in simple terms."
response = perplexity.chat(prompt)
print(response)
from webscout import OPENGPT
opengpt = OPENGPT(is_conversation=True, max_tokens=8000, timeout=30, assistant_id="bca37014-6f97-4f2b-8928-81ea8d478d88")
while True:
# Prompt the user for input
prompt = input("Enter your prompt: ")
# Send the prompt to the OPENGPT model and print the response
response_str = opengpt.chat(prompt)
print(response_str)
from webscout import KOBOLDAI
# Instantiate the KOBOLDAI class with default parameters
koboldai = KOBOLDAI()
# Define a prompt to send to the AI
prompt = "What is the capital of France?"
# Use the 'ask' method to get a response from the AI
response = koboldai.ask(prompt)
# Extract and print the message from the response
message = koboldai.get_message(response)
print(message)
from webscout import REKA
a = REKA(is_conversation=True, max_tokens=8000, timeout=30,api_key="")
prompt = "tell me about india"
response_str = a.chat(prompt)
print(response_str)
from webscout import Cohere
a = Cohere(is_conversation=True, max_tokens=8000, timeout=30,api_key="")
prompt = "tell me about india"
response_str = a.chat(prompt)
print(response_str)
Gratitude to Devs do Code for their assistance.
from webscout import Xjai
from rich import print
ai = Xjai(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
)
prompt = "Tell me about india"
response = ai.chat(prompt)
print(response)
from webscout import ThinkAnyAI
ai = ThinkAnyAI(
is_conversation=True,
max_tokens=800,
timeout=30,
intro=None,
filepath=None,
update_file=True,
proxies={},
history_offset=10250,
act=None,
web_search=False,
)
prompt = "what is meaning of life"
response = ai.ask(prompt)
# Extract and print the message from the response
message = ai.get_message(response)
print(message)
from webscout.LLM import LLM
# Read the system message from the file
with open('system.txt', 'r') as file:
system_message = file.read()
# Initialize the LLM class with the model name and system message
llm = LLM(model="microsoft/WizardLM-2-8x22B", system_message=system_message)
while True:
# Get the user input
user_input = input("User: ")
# Define the messages to be sent
messages = [
{"role": "user", "content": user_input}
]
# Use the mistral_chat method to get the response
response = llm.chat(messages)
# Print the response
print("AI: ", response)
from __future__ import annotations
from typing import List, Optional
from webscout.LLM import LLM
from webscout import WEBS
import warnings
system_message: str = (
"As an AI assistant, I have been designed with advanced capabilities, including real-time access to online resources. This enables me to enrich our conversations and provide you with informed and accurate responses, drawing from a vast array of information. With each interaction, my goal is to create a seamless and meaningful connection, offering insights and sharing relevant content."
"My directives emphasize the importance of respect, impartiality, and intellectual integrity. I am here to provide unbiased responses, ensuring an ethical and respectful exchange. I will respect your privacy and refrain from sharing any personal information that may be obtained during our conversations or through web searches, only utilizing web search functionality when necessary to provide the most accurate and up-to-date information."
"Together, let's explore a diverse range of topics, creating an enjoyable and informative experience, all while maintaining the highest standards of privacy and respect"
)
# Ignore the specific UserWarning
warnings.filterwarnings("ignore", category=UserWarning, module="curl_cffio", lineno=205)
LLM = LLM(model="mistralai/Mixtral-8x22B-Instruct-v0.1", system_message=system_message)
def chat(
user_input: str, webs: WEBS, max_results: int = 10
) -> Optional[str]:
"""
Chat function to perform a web search based on the user input and generate a response using the LLM model.
Parameters
----------
user_input : str
The user input to be used for the web search
webs : WEBS
The web search instance to be used to perform the search
max_results : int, optional
The maximum number of search results to include in the response, by default 10
Returns
-------
Optional[str]
The response generated by the LLM model, or None if there is no response
"""
# Perform a web search based on the user input
search_results: List[str] = []
for r in webs.text(
user_input, region="wt-wt", safesearch="off", timelimit="y", max_results=max_results
):
search_results.append(str(r)) # Convert each result to a string
# Define the messages to be sent, including the user input, search results, and system message
messages = [
{"role": "user", "content": user_input + "\n" + "websearch results are:" + "\n".join(search_results)},
]
# Use the chat method to get the response
response = LLM.chat(messages)
return response
if __name__ == "__main__":
while True:
# Get the user input
user_input = input("User: ")
# Perform a web search based on the user input
with WEBS() as webs:
response = chat(user_input, webs)
# Print the response
if response:
print("AI:", response)
else:
print("No response")
from __future__ import annotations
from typing import List, Optional
from webscout.LLM import LLM
from webscout import DeepWEBS
import warnings
system_message: str = (
"As an AI assistant, I have been designed with advanced capabilities, including real-time access to online resources. This enables me to enrich our conversations and provide you with informed and accurate responses, drawing from a vast array of information. With each interaction, my goal is to create a seamless and meaningful connection, offering insights and sharing relevant content."
"My directives emphasize the importance of respect, impartiality, and intellectual integrity. I am here to provide unbiased responses, ensuring an ethical and respectful exchange. I will respect your privacy and refrain from sharing any personal information that may be obtained during our conversations or through web searches, only utilizing web search functionality when necessary to provide the most accurate and up-to-date information."
"Together, let's explore a diverse range of topics, creating an enjoyable and informative experience, all while maintaining the highest standards of privacy and respect"
)
# Ignore the specific UserWarning
warnings.filterwarnings("ignore", category=UserWarning, module="curl_cffio", lineno=205)
LLM = LLM(model="mistralai/Mixtral-8x22B-Instruct-v0.1", system_message=system_message)
def perform_web_search(query):
# Initialize the DeepWEBS class
D = DeepWEBS()
# Set up the search parameters
search_params = D.DeepSearch(
queries=[query], # Query to search
result_num=10, # Number of search results
safe=True, # Enable SafeSearch
types=["web"], # Search type: web
extract_webpage=True, # True for extracting webpages
overwrite_query_html=True,
overwrite_webpage_html=True,
)
# Execute the search and retrieve results
results = D.queries_to_search_results(search_params)
return results
def chat(user_input: str, result_num: int = 10) -> Optional[str]:
"""
Chat function to perform a web search based on the user input and generate a response using the LLM model.
Parameters
----------
user_input : str
The user input to be used for the web search
max_results : int, optional
The maximum number of search results to include in the response, by default 10
Returns
-------
Optional[str]
The response generated by the LLM model, or None if there is no response
"""
# Perform a web search based on the user input
search_results = perform_web_search(user_input)
# Extract URLs from search results
url_results = []
for result in search_results[0]['query_results']:
url_results.append(f"{result['title']} ({result['site']}): {result['url']}")
# Format search results
formatted_results = "\n".join(url_results)
# Define the messages to be sent, including the user input, search results, and system message
messages = [
{"role": "user", "content": f"User question is:\n{user_input}\nwebsearch results are:\n{formatted_results}"},
]
# Use the chat method to get the response
response = LLM.chat(messages)
return response
if __name__ == "__main__":
while True:
# Get the user input
user_input = input("User: ")
# Perform a web search based on the user input
response = chat(user_input)
# Print the response
if response:
print("AI:", response)
else:
print("No response")
from webscout.webai import Main
def use_rawdog_with_webai(prompt):
"""
Wrap the webscout default method in a try-except block to catch any unhandled
exceptions and print a helpful message.
"""
try:
webai_bot = Main(
max_tokens=500,
provider="cohere",
temperature=0.7,
top_k=40,
top_p=0.95,
model="command-r-plus", # Replace with your desired model
auth=None, # Replace with your auth key/value (if needed)
timeout=30,
disable_conversation=True,
filepath=None,
update_file=True,
intro=None,
rawdog=True,
history_offset=10250,
awesome_prompt=None,
proxy_path=None,
quiet=True
)
webai_response = webai_bot.default(prompt)
except Exception as e:
print("Unexpected error:", e)
if __name__ == "__main__":
user_prompt = input("Enter your prompt: ")
use_rawdog_with_webai(user_prompt)
python -m webscout.webai webai --provider "phind" --rawdog