pytorch implementation of video captioning
recommend installing pytorch and python packages using Anaconda
requirements
- cuda
- pytorch 0.4.0
- python3
- ffmpeg (can install using anaconda)
python packages
- tqdm
- pillow
- pretrainedmodels
- nltk
Data
MSR-VTT. Test video doesn't have captions, so I spilit train-viedo to train/val/test. Extract and put them in ./data/
directory
- train-video: download link
- test-video: download link
- json info of train-video: download link
- json info of test-video: download link
Options
all default options are defined in opt.py or corresponding code file, change them for your like.
Acknowledgements
Some code refers to ImageCaptioning.pytorch
Usage
(Optional) c3d features
you can use video-classification-3d-cnn-pytorch to extract features from video.
Steps
- preprocess videos and labels
python prepro_feats.py --output_dir data/feats/resnet152 --model resnet152 --n_frame_steps 40 --gpu 4,5
python prepro_vocab.py
- Training a model
python train.py --gpu 0 --epochs 3001 --batch_size 300 --checkpoint_path data/save --feats_dir data/feats/resnet152 --model S2VTAttModel --with_c3d 1 --c3d_feats_dir data/feats/c3d_feats --dim_vid 4096
-
test
opt_info.json will be in same directory as saved model.
python eval.py --recover_opt data/save/opt_info.json --saved_model data/save/model_1000.pth --batch_size 100 --gpu 1
TODO
- lstm
- beam search
- reinforcement learning
- dataparallel (broken in pytorch 0.4)
Acknowledgements
Some code refers to ImageCaptioning.pytorch