An easy to use neural network library written in Rust.
For the documentation take a look at the original library or generate it using "cargo doc".
RustNN is a feedforward neural network library. The library generates fully connected multi-layer artificial neural networks that are trained via backpropagation. Networks are trained using an incremental training mode.
This fork adds L2 regularization and several activation functions to the original crate. Additionally, there are a few minor improvements. Lambda can be set just like the learning rate. The activation functions for hidden and output gets set in NN::new as second and third parameter respectively.
This example creates a neural network with 2
nodes in the input layer,
a single hidden layer containing 3
nodes, and 1
node in the output layer.
The network is then trained on examples of the XOR
function. All of the
methods called after train(&examples)
are optional and are just used
to specify various options that dictate how the network should be trained.
When the go()
method is called the network will begin training on the
given examples. See the documentation for the NN
and Trainer
structs
for more details.
use nn::{NN, HaltCondition, Activation};
// create examples of the XOR function
// the network is trained on tuples of vectors where the first vector
// is the inputs and the second vector is the expected outputs
let examples = [
(vec![0f64, 0f64], vec![0f64]),
(vec![0f64, 1f64], vec![1f64]),
(vec![1f64, 0f64], vec![1f64]),
(vec![1f64, 1f64], vec![0f64]),
];
// create a new neural network by passing a pointer to an array
// that specifies the number of layers and the number of nodes in each layer
// in this case we have an input layer with 2 nodes, one hidden layer
// with 3 nodes and the output layer has 1 node
let mut net = NN::new(&[2, 3, 1], Activation::PELU, Activation::Sigmoid);
// train the network on the examples of the XOR function
// all methods seen here are optional except go() which must be called to begin training
// see the documentation for the Trainer struct for more info on what each method does
net.train(&examples)
.halt_condition( HaltCondition::Epochs(10000) )
.log_interval( Some(100) )
.momentum( 0.1 )
.rate( 0.3 )
.go();
// evaluate the network to see if it learned the XOR function
for &(ref inputs, ref outputs) in examples.iter() {
let results = net.run(inputs);
let (result, key) = (results[0].round(), outputs[0]);
assert!(result == key);
}