Based on the idea that Decomposition for Enhancing Attention, we propose the workflow paradigm method named DEA-SQL with five major steps as shown in Figure. Check out our paper for more information.
# 1. Clone the repo
git clone https://github.com/FlyingFeather/DEA-SQL.git
cd DEA-SQL && mkdir data
# 2. Make a conda environment
conda create -n deasql python=3.9
conda activate deasql
# 3. Install requirements
pip install -r requirements.txt
python nltk_downloader.py
Download the data set from the spider official website under DEA-SQL
, unzip it and put it into the data
folder.
We provide the data in drive if it is unable to download dataset from spider official website.
mkdir data
unzip spider.zip -d data
The directory structure should be as follows:
.
├── argsparser.py
├── common
├── correct_sql.py
├── data
│ └── spider
│ ├── ...
│ └── database
├── data_preprocess.py
├── docs
├── evaluation
├── fewshot
├── filter_characters.py
├── gen_sql.py
├── get_ner.py
├── hardness_eval.py
├── __init__.py
├── LICENSE
├── llm
├── logger.py
├── main.py
├── nltk_downloader.py
├── outputs
├── prompt
├── README.md
├── requirements.txt
└── single_eval.py
Please modify the OpenAI configuration in common/static_config.py
and configure the relevant environment variables for the Azure OpenAI API.
Several important parameters:
- dataset: The name of dataset.
- few_shot_mode: The method of retrieving fewshot can be selected from [random, ques_tim, masked_ques_sim].
- few_shot_data: The data of retrieving fewshot can be selected from [train_merge_v1, train_merge_v5]
- insert_value: The number of lines that are inserted in database prompt.
- embedding_base_model: The base embedding model in retrieving few-shot step.
- sc_filter_nums: The number of information filter layer.
python main.py --save_file_name "dea-sql.txt" --dataset "spider" --mode "dev" --sample "False" --few_shot_mode "masked_ques_sim" --insert_value 3 --embedding_base_model "openai" --sc_filter_nums 3 --few_shot_data "train_merge_v5"
For the first evaluation, please perform: python nltk_downloader.py
python evaluation/test-suite-sql-eval/evaluation.py --gold "evaluation/gold_files/spider_dev_gold.sql" --pred "outputs/spider/dea-sql.txt" --db ./data/spider/database --print_file_name "outputs/spider/spider-dea-sql.txt" --table './data/spider/tables.json' --etype exec
@article{xie2024decomposition,
title={Decomposition for Enhancing Attention: Improving LLM-based Text-to-SQL through Workflow Paradigm},
author={Yuanzhen Xie and Xinzhou Jin and Tao Xie and MingXiong Lin and Liang Chen and Chenyun Yu and Lei Cheng and ChengXiang Zhuo and Bo Hu and Zang Li},
journal={arXiv preprint arXiv:2402.10671},
year={2024}
}