Ortam:
- Python 3.7.7
- Anaconda
- PyTorch 1.6
- 4 NVIDIA Quadro RTX 6000 24GB
conda create -n melanoma python=3.7 pip
pip install -r requirements.txt
cd data/isic2019
bash download_isic2019.sh
unzip ISIC_2019_Training_Input.zip
cd ..
kaggle competitions download -c siim-isic-melanoma-classification
unzip siim-isic-melanoma-classification.zip
https://drive.google.com/file/d/13o86SyGwufN_QJiWvJ98G0s-elLnOaqK/view?usp=sharing
cd src/etl
python 0_create_isic2019_splits.py
cd ..
python run.py configs/isic2019/mk001.yaml train --gpu 0,1,2,3 --num-workers 4
Eğer farklı bir isim kullanıyorsanız src/configs/predict_isic2019.yaml
içindeki model_checkpoints
'i kendi model isminize göre değiştirin
cd src
python run.py configs/predict/predict_isic2019.yaml
cd src/eval
python nevi.py
cd ../etl
python 10_combine_cdeotte_nevi_with_isic2019.py
Uyguladığınız 'nevus' etiketleriyle beraber ISIC 2019 ve ISIC 2020 veri setlerini kullanarak modelinizi eğitin.
cd src
bash train_kfold.sh
cd src
python run.py configs/predict/predict_bee_nometa.yaml predict_kfold \
--gpu 0 --backbone tf_efficientnet_b6_ns \
--model-config configs/bee/bee508.yaml \
--checkpoint-dir ../checkpoints/bee508/tf_efficientnet_b6_ns/ \
--save-file ../lb-predictions/bee508_5fold.pkl --num-workers 4
cd etl
python 12_make_pseudo_nometa.py
cd src
bash train_kfold_pseudolabel.sh
cd src
bash inference.sh