/SuperTickets

[ECCV 2022] SuperTickets: Drawing Task-Agnostic Lottery Tickets from Supernets via Jointly Architecture Searching and Parameter Pruning

Primary LanguagePythonMIT LicenseMIT

SuperTickets: Drawing Task-Agnostic Lottery Tickets from Supernets via Jointly Architecture Searching and Parameter Pruning

Haoran You, Baopu Li, Zhanyi Sun, Xu Ouyang, Yingyan Lin

Accepted by ECCV 2022

Environment

Require Python3, CUDA>=10.1, and torch>=1.4, all dependencies are as follows:

pip3 install torch==1.4.0 torchvision==0.5.0 opencv-python tqdm tensorboard lmdb pyyaml packaging Pillow==6.2.2 matplotlib yacs pyarrow==0.17.1
pip3 install cityscapesscripts  # for Cityscapes segmentation
pip3 install mmcv-full # for Segmentation data loader
pip3 install pycocotools shapely==1.6.4 Cython pandas pyyaml json_tricks scikit-image  # for COCO keypoint estimation

or conda env create -f environment.yml

Setup

Training script in general

python3 -m torch.distributed.launch --nproc_per_node=${NPROC_PER_NODE} --nnodes=${N_NODES} \
        --node_rank=${NODE_RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} \
        --use_env train.py app:configs/YOUR_TASK.yml

Supported tasks:

  • cls_imagenet
  • seg_cityscapes
  • seg_ade20k
  • keypoint_coco

Examples for training SuperTickets on ImageNet, COCO keypoint, Cityscapes, and ADE20K

python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env train.py app:configs/cls_imagenet_g_0.9.yml
python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env train.py app:configs/keypoint_coco_g_0.9.yml
python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env train.py app:configs/seg_cityscapes_g_0.8.yml
python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env train.py app:configs/seg_ade20k_g_0.9.yml

Examples for testing the trained models

python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env validate.py app:configs/cls_imagenet_g_0.9.yml \
--resume 'output/cls_imagenet_g_0.9/20220202-001816/pruned_checkpoint.pt' \
--test_only True
python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env validate.py app:configs/keypoint_coco_g_0.9.yml \
--resume 'output/keypoint_coco_g_0.9/20220211-160107/pruned_checkpoint.pt' \
--test_only True
python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env validate.py app:configs/seg_cityscapes_g_0.8.yml \
--resume 'output/seg_cityscapes_g_0.7/20220108-175942/pruned_checkpoint.pt' \
--test_only True
python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env validate.py app:configs/seg_ade20k_g_0.9.yml \
--resume 'output/seg_ade20k_g_0.9/20220119-223955/pruned_checkpoint.pt' \
--test_only True

Example for transferring from ImageNet to COCO keypoint

(only transfer the feature extractor while keep the classification layer unchanged)

python3 -m torch.distributed.launch \
--nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
--master_port=1234 \
--use_env transfer_img.py app:configs/transfer/cls_imagenet_to_keypoint_coco_g_0.9.yml \
--pretrained "output/cls_imagenet_g_0.9/20220209-130559/retrain_checkpoint.pt" \
--cur_model 'output/keypoint_coco_g_0.9/20220211-160107/pruned_checkpoint.pt'

Datasets

  1. ImageNet

    • Prepare ImageNet data following pytorch example.
    • Optional: Generate lmdb dataset by utils/lmdb_dataset.py. If not, please overwrite dataset:imagenet1k_lmdb in yaml to dataset:imagenet1k.
    • The directory structure of $DATA_ROOT should look like this:
    ${DATA_ROOT}
    ├── imagenet
    └── imagenet_lmdb
    
    • Link the data:
    ln -s YOUR_LMDB_DIR data/imagenet_lmdb
  2. Cityscapes

    • Download data from Cityscapes.
    • unzip gtFine_trainvaltest.zip leftImg8bit_trainvaltest.zip
    • Link the data:
    ln -s YOUR_DATA_DIR data/cityscapes
    • preprocess the data:
    python3 tools/convert_cityscapes.py data/cityscapes --nproc 8
  3. ADE20K

    • Download data from ADE20K.
    • unzip ADEChallengeData2016.zip
    • Link the data:
    ln -s YOUR_DATA_DIR data/ade20k
  4. COCO keypoints

    • Download data from COCO.
    • build tools
    git clone https://github.com/cocodataset/cocoapi.git
    cd cocoapi/PythonAPI
    python3 setup.py build_ext --inplace
    python3 setup.py build_ext install
    make  # for nms
    • Unzip and Link the data:
    ln -s YOUR_DATA_DIR data/coco
    • We also provide person detection result of COCO val2017 and test-dev2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive.
    • Download and extract them under data/coco/person_detection_results, and make them look like this:
    ${POSE_ROOT}
    |-- data
    `-- |-- coco
        `-- |-- annotations
            |   |-- person_keypoints_train2017.json
            |   `-- person_keypoints_val2017.json
            |-- person_detection_results
            |   |-- COCO_val2017_detections_AP_H_56_person.json
            |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
            `-- images
                |-- train2017
                |   |-- 000000000009.jpg
                |   |-- 000000000025.jpg
                |   |-- 000000000030.jpg
                |   |-- ...
                `-- val2017
                    |-- 000000000139.jpg
                    |-- 000000000285.jpg
                    |-- 000000000632.jpg
                    |-- ...
    

Miscellaneous

  1. Plot keypoint detection results.

    python3 tools/plot_coco.py --prediction output/results/keypoints_val2017_results_0.json --save-path output/vis/
  2. About YAML config

  • The codebase is a general ImageNet training framework using yaml config with several extension under apps dir, based on PyTorch.
    • YAML config with additional features
      • ${ENV} in yaml config.
      • _include for hierachy config.
      • _default key for overwriting.
      • xxx.yyy.zzz for partial overwriting.
    • --{{opt}} {{new_val}} for command line overwriting.
  1. If you find our work useful in your research please consider citing our paper:
    @inproceedings{SuperTickets,
        title={SuperTickets: Drawing Task-Agnostic Lottery Tickets from Supernets via Jointly Architecture Searching and Parameter Pruning},
        author={Haoran You, Baopu Li, Zhanyi Sun, Xu Ouyang, Yingyan Lin},
        booktitle={European Conference on Computer Vision (ECCV)},
        year={2022},
    }
    

Acknowledgement