It is suggested to use conda
to manage the python environment, and you can install the required packages from the provided environment.yml
directly.
conda env create --file environment.yml
We provide three datasets in Google Drive
1. MD17
The MD17 dataset can be downloaded from MD17.
2. Motion Capture
The raw data were obtained via CMU Motion Capture Database. The preprocessed dataset as well as the splits are provided in motion
folder.
3. Protein MD
We provide the data preprocessing code in mdanalysis/preprocess.py
. One can simply run
python mdanalysis/preprocess.py
1. MD17
python main_md.py --exp_name='exp_1' --model='estag' --mol='aspirin' --n_layers=2 --fft=True --eat=True --with_mask
2. Protein MD
python main_mdanalysis.py --exp_name='exp_2' --model='estag' --n_layers=2 --fft=True --eat=True --with_mask
3. Motion Capture
python main_motion.py --exp_name='exp_3' --model='estag' --n_layers=2 --fft=True --eat=True --with_mask
bash rollout/rollout.sh
Here we demonstrate with MD17 as an instance, and the same procedure can be employed for Protein and Motion.
-
Predict the states (coordinates) of the next frame according to a selected trajectory
python rollout/md17_pred.py
-
Based on the predicted coordinates, launch the file
visualization/vis_md.ipynb
to display the molecule.
If our work is helpful for your research, you can cite it as follows:
@article{limi_2024_estag,
title={Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics},
author={Wu, Liming and Hou, Zhichao and Yuan, Jirui and Rong, Yu and Huang, Wenbing},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}