GYXstudy's Stars
datawhalechina/llm-cookbook
面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版
harvardnlp/annotated-transformer
An annotated implementation of the Transformer paper.
benedekrozemberczki/pytorch_geometric_temporal
PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)
nnzhan/MTGNN
laiguokun/multivariate-time-series-data
KimMeen/Awesome-GNN4TS
[TPAMI 2024] Awesome Resources of GNNs for Time Series Analysis (GNN4TS)
nnzhan/Graph-WaveNet
graph wavenet
DA-southampton/Read_Bert_Code
Bert源码阅读与讲解(Pytorch版本)-以BERT文本分类代码为例子
LeiBAI/AGCRN
Adaptive Graph Convolutional Recurrent Network
jiaxiang-cheng/PyTorch-Transformer-for-RUL-Prediction
Transformer implementation with PyTorch for remaining useful life prediction on turbofan engine with NASA CMAPSS data set. Inspired by Mo, Y., Wu, Q., Li, X., & Huang, B. (2021). Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. Journal of Intelligent Manufacturing, 1-10.
liguge/Deep-Residual-Shrinkage-Networks-for-intelligent-fault-diagnosis-DRSN-
Deep Residual Shrinkage Networks for Intelligent Fault Diagnosis(pytorch) 深度残差收缩网络应用于故障诊断
guoshnBJTU/ASTGNN
This is a Pytorch implementation of ASTGNN. Now the corresponding paper is available online at https://ieeexplore.ieee.org/document/9346058.
VincLee8188/GMAN-PyTorch
Implementation of Graph Muti-Attention Network with PyTorch
HazeDT/DAGCN
This code is about the implementation of Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions.
RadiantResearch/TSAT
Transformer based model for time series prediction
sshleifer/Graph-WaveNet
Modifications to Graph Wavenet
Frank-Wang-oss/FCSTGNN
zhmou/Turbofan-engine-RUL-prediction
RUL prediction for C-MAPSS dataset, reproduction of this paper: https://personal.ntu.edu.sg/xlli/publication/RULAtt.pdf
shangzongjiang/MAGNN
XinyuanLiao/AttnPINN-for-RUL-Estimation
A Framework for Remaining Useful Life Prediction Based on Self-Attention and Physics-Informed Neural Networks
nicolasoyharcabal/ConvRNN_for_RUL_estimation
Code used in Thesis "Convolutional Recurrent Neural Networks for Remaining Useful Life Prediction in Mechanical Systems".
Zzzsdu/DAST
The code of DAST
foryichuanqi/RESS-Paper-2022.09-Remaining-useful-life-prediction-by-TaFCN
The source code of paper: Trend attention fully convolutional network for remaining useful life estimation in the turbofan engine PHM of CMAPSS dataset. Signal selection, Attention mechanism, and Interpretability of deep learning are explored.
GuoHaoren/Implementation-of-GCU-Transformer-for-RUL-Prediction-on-CMAPSS
Implementation of GCU-Transformer for RUL Prediction on CMAPSS
monologuesmw/bearing-fault-diagnosis-by-wdcnn
wdcnn model for bearing fault diagnosis
LazyLZ/multi-head-attention-for-rul-estimation
Dhruvadityamittal/RUL_Prediction_of_LIB_using_Spatio_temporal_Multimodal_Attention_Networks
Code for Remaining Useful Life Prediction of Lithium-ion Batteries using Spatio-temporal Multimodal Attention Networks
Frank-Wang-oss/HierCorrPool
jhfeng0215/STAGNN
MoniWong/Graph-WaveNet-RUL