sed -i 's/X/23/' file.txt
perl -p -i -e 's/ /\t/g' file.txt
sed -i -e 's/^/prefix/' file.txt
sed 's/$/suffix/' file.txt > new-file.txt
split a file (cmds.txt) into separate files of 1000 rows each, add numeric suffixes starting at 0 to file output name
split -l 1000 -d cmds.txt cmds.split.
gzip -dc RefChr20.vcf.gz | grep -F "0.578,0.414" --color
for $i in trait1 trait2 trait3; do; --insert code here--; done
for $CHR in
`seq 1 22`; do; --insert code here--; done
for ((i=1;i<=22;i++)); do; --insert code here--; done
#start at 1, go to 22, increment by 1
see hidden files too ls -a
find . -name "file.txt"
LC_ALL=C; export LC_ALL
awk '{print $0,"1" }' file.txt > file1.txt
tr '[:upper:]' '[:lower:]' < inputfile.txt > outputfile.txt
zgrep -E "CHROM|33514465" chr20.vcf.gz | cut -f 2,4,5,9,14
zgrep -vE ^# file.vcf.gz | wc -l
zgrep -v -E "^[^:]+:[0-9]+_[ATCG]/[ATCG]_" file.gz | less -S
zgrep -E "^22:[0-9]+_A/T" file.gz | less -S
tabix Mytabixedfile.vcf.gz chr22:16188597 | less -S
bcftools annotate --rename-chrs chr_rename.txt
where chr_name.txt
contains a list like
1 chr1
2 chr2
3 chr3
4 chr4
5 chr5
6 chr6
Beta = z / sqrt(2p(1− p)(n + z^2)) and SE =1 / sqrt(2p(1− p)(n + z^2))
SE =1 / sqrt(2p(1− p)(n + z^2)) See Zhu, Z., Zhang, F., Hu, H. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48, 481–487 (2016). https://doi.org/10.1038/ng.3538
SNPnexus https://www.snp-nexus.org/v4/ Command line: ‘convert_loc_to_rs()’ from: https://github.com/RHReynolds/colochelpR
awk '{ if ($2 == $3) { print "same"; } else { print "different"; } }' < input.txt > output.txt
https://github.com/ilarsf/gwasTools (and forked version: https://github.com/bnwolford/gwasTools) https://github.com/hyunminkang/apigenome Hyun Min Kang's Big data genomics analysis libraries & tools
Carlo Sidore's Sequence Analysis Tutorial: https://genome.sph.umich.edu/wiki/Tutorial:_Low_Pass_Sequence_Analysis
#Binary Traits: https://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/
#Quantiative Traits: https://genome.sph.umich.edu/wiki/Power_Calculations:_Quantitative_Traits
#Code: https://www.mv.helsinki.fi/home/mjxpirin/GWAS_course/material/GWAS3.html
online tool to merge the multiple JPEGs together https://www.imgonline.com.ua/eng/combine-two-images-into-one.php
visualization of a table of data, Sparkler: http://bipolar-project.sph.umich.edu/html/sparkler/
LZ load your own data: https://abought.github.io/locuszoom-tabix/ (you'll need to bgzip/tabix your GWAS files to use) Manhattan plots. Upload. Analyze. Share: https://my.locuszoom.org
quick look-up of heritability estimates from twin studies: http://match.ctglab.nl/#/home
GWAS atlas: https://atlas.ctglab.nl
Pattern recognition and machine learning: https://github.com/ctgk/PRML/blob/master/README.md
PheWeb instances: https://pheweb.org
PRS tutorial (UofT): https://kcniconfluence.camh.ca/display/GEN/Tutorial+for+Polygenic+Risk+Score
Database Drug Bank: https://www.uniprot.org/database/DB-0019
RNAseq GitHub course https://github.com/hemberg-lab/scRNA.seq.course
Neale lab UKB genetic correlation browser: https://ukbb-rg.hail.is