/R3Det_Tensorflow

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

Primary LanguagePythonMIT LicenseMIT

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

Abstract

R3Det and R3Det++ are based on Focal Loss for Dense Object Detection, and it is completed by YangXue.

Techniques:

Pipeline

5

Latest Performance

More results and trained models are available in the MODEL_ZOO.md.

DOTA1.0

R3Det

Model Backbone Training data Val data mAP Model Link Anchor Reg. Loss Angle Range lr schd Data Augmentation GPU Image/GPU Configs
R3Det ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test 70.27 - H + R smooth L1 90 2x No 4X GeForce RTX 2080 Ti 1 cfgs_res50_dota_r3det_v1.py
R3Det* ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test - H + R smooth L1 90 2x No 2X GeForce RTX 2080 Ti 1 cfgs_res50_dota_r3det_v2.py
R3Det* ResNet50_v1d 600->800 DOTA1.0 trainval DOTA1.0 test - H + R iou-smooth L1 [1-exp(1-x)] 90 2x No 4X GeForce RTX 2080 Ti 1 cfgs_res50_dota_r3det_v12.py

Visualization

1

My Development Environment

docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、opencv(cv2)
4、tfplot 0.2.0 (optional)
5、tensorflow-gpu 1.13

Download Model

Pretrain weights

1、Please download resnet50_v1, resnet101_v1, resnet152_v1, efficientnet, mobilenet_v2 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone (resnet_v1d), refer to gluon2TF.

Compile

cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)

cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace

Train

1、If you want to train your own data, please note:

(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py     
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py  

2、Make tfrecord
For DOTA dataset:

cd $PATH_ROOT\data\io\DOTA
python data_crop.py
cd $PATH_ROOT/data/io/  
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/' 
                                   --xml_dir='labeltxt'
                                   --image_dir='images'
                                   --save_name='train' 
                                   --img_format='.png' 
                                   --dataset='DOTA'

3、Multi-gpu train

cd $PATH_ROOT/tools
python multi_gpu_train_r3det.py

Eval

cd $PATH_ROOT/tools
python test_dota_r3det.py --test_dir='/PATH/TO/IMAGES/'  
                          --gpus=0,1,2,3,4,5,6,7          

Tensorboard

cd $PATH_ROOT/output/summary
tensorboard --logdir=.

3

4

Citation

If this is useful for your research, please consider cite.

@article{yang2020arbitrary,
    title={Arbitrary-Oriented Object Detection with Circular Smooth Label},
    author={Yang, Xue and Yan, Junchi},
    journal={arXiv preprint arXiv:2003.05597},
    year={2020}
}

@article{yang2019r3det,
    title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
    author={Yang, Xue and Liu, Qingqing and Yan, Junchi and Li, Ang and Zhang, Zhiqiang and Yu, Gang},
    journal={arXiv preprint arXiv:1908.05612},
    year={2019}
}

@article{yang2020scrdet++,
    title={SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing},
    author={Yang, Xue and Yan, Junchi and Yang, Xiaokang and Tang, Jin and Liao, Wenglong and He, Tao},
    journal={arXiv preprint arXiv:2004.13316},
    year={2020}
}

@inproceedings{yang2019scrdet,
    title={SCRDet: Towards more robust detection for small, cluttered and rotated objects},
    author={Yang, Xue and Yang, Jirui and Yan, Junchi and Zhang, Yue and Zhang, Tengfei and Guo, Zhi and Sun, Xian and Fu, Kun},
    booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
    pages={8232--8241},
    year={2019}
}

@inproceedings{xia2018dota,
    title={DOTA: A large-scale dataset for object detection in aerial images},
    author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    pages={3974--3983},
    year={2018}
}

Reference

1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet