R3Det and R3Det++ are based on Focal Loss for Dense Object Detection, and it is completed by YangXue.
Techniques:
- ResNet, MobileNetV2, EfficientNet
- Feature Refinement Module (FRM)
- Instance Level Denoising (InLD)
- IoU-Smooth L1 Loss
- Circular Smooth Label (CSL)
- Anchor Free (one anchor per feature point)
- mmdetection version is released
More results and trained models are available in the MODEL_ZOO.md.
Model | Backbone | Training data | Val data | mAP | Model Link | Anchor | Reg. Loss | Angle Range | lr schd | Data Augmentation | GPU | Image/GPU | Configs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R3Det | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 70.27 | - | H + R | smooth L1 | 90 | 2x | No | 4X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_r3det_v1.py |
R3Det* | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | - | H + R | smooth L1 | 90 | 2x | No | 2X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_r3det_v2.py | |
R3Det* | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | - | H + R | iou-smooth L1 [1-exp(1-x)] | 90 | 2x | No | 4X GeForce RTX 2080 Ti | 1 | cfgs_res50_dota_r3det_v12.py |
docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、opencv(cv2)
4、tfplot 0.2.0 (optional)
5、tensorflow-gpu 1.13
1、Please download resnet50_v1, resnet101_v1, resnet152_v1, efficientnet, mobilenet_v2 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone (resnet_v1d), refer to gluon2TF.
- Baidu Drive, password: 5ht9.
- Google Drive
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)
cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
1、If you want to train your own data, please note:
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py
2、Make tfrecord
For DOTA dataset:
cd $PATH_ROOT\data\io\DOTA
python data_crop.py
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/'
--xml_dir='labeltxt'
--image_dir='images'
--save_name='train'
--img_format='.png'
--dataset='DOTA'
3、Multi-gpu train
cd $PATH_ROOT/tools
python multi_gpu_train_r3det.py
cd $PATH_ROOT/tools
python test_dota_r3det.py --test_dir='/PATH/TO/IMAGES/'
--gpus=0,1,2,3,4,5,6,7
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
If this is useful for your research, please consider cite.
@article{yang2020arbitrary,
title={Arbitrary-Oriented Object Detection with Circular Smooth Label},
author={Yang, Xue and Yan, Junchi},
journal={arXiv preprint arXiv:2003.05597},
year={2020}
}
@article{yang2019r3det,
title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
author={Yang, Xue and Liu, Qingqing and Yan, Junchi and Li, Ang and Zhang, Zhiqiang and Yu, Gang},
journal={arXiv preprint arXiv:1908.05612},
year={2019}
}
@article{yang2020scrdet++,
title={SCRDet++: Detecting Small, Cluttered and Rotated Objects via Instance-Level Feature Denoising and Rotation Loss Smoothing},
author={Yang, Xue and Yan, Junchi and Yang, Xiaokang and Tang, Jin and Liao, Wenglong and He, Tao},
journal={arXiv preprint arXiv:2004.13316},
year={2020}
}
@inproceedings{yang2019scrdet,
title={SCRDet: Towards more robust detection for small, cluttered and rotated objects},
author={Yang, Xue and Yang, Jirui and Yan, Junchi and Zhang, Yue and Zhang, Tengfei and Guo, Zhi and Sun, Xian and Fu, Kun},
booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
pages={8232--8241},
year={2019}
}
@inproceedings{xia2018dota,
title={DOTA: A large-scale dataset for object detection in aerial images},
author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={3974--3983},
year={2018}
}
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet