Generative-AI Navigation Information Competition for UAV Reconnaissance in Natural Environments I : Image Data Generation
- Operating system: CentOS 7.8
- Programmimg language: Python 3.8.19
- Hardware: NVIDIA Tesla V100-PCIE-32GB
./
├── river
├── road
An environment can be created with all the Python dependencies.
conda env create -f environment.yml
After the data preprocessing, place the training dataset img
and label_img
in train_B
and train_A
.
./river/AICUP2024-spring/dataset/cityscapes
├── train_A
│ ├── TRA_RI_1000000.png
│ .
| .
| .
│ └── TRA_RI_1002159.png
├── train_B
│ ├── TRA_RI_1000000.jpg
| .
| .
| .
│ └── TRA_RI_1002159.jpg
├── test_A
| ├── PRI_RI_1000000.png
| .
| .
| .
| └── PRI_RI_1000359.png
└── test_B
./road/AICUP2024-spring/dataset/cityscapes
├── train_A
│ ├── TRA_RO_1002160.png
│ .
| .
| .
│ └── TRA_RO_1004319.png
├── train_B
│ ├── TRA_RO_1002160.jpg
| .
| .
| .
│ └── TRA_RO_1004319.jpg
├── test_A
| ├── PRI_RO_100360.png
| .
| .
| .
| └── PRI_RO_1000719.png
└── test_B
- river
python train.py --name RIVER --label_nc 0 --no_instance
- road
python train.py --name ROAD --label_nc 0 --no_instance
The model parameters will be saved in checkpoints
folder.
latest_net_G.pth
latest_net_D.pth
- river
python test.py --name RIVER --label_nc 0 --no_instance --how_many 360
- road
python test.py --name ROAD --label_nc 0 --no_instance --how_many 360
The generated results will be saved in results
folder. And it also can be downloaded from here