A simple and flexible template to structure a Machine Learning project.
pytorch-template/
│
├── data/
│ ├── processed/ <- Processed data via data scripts
│ └── raw/ <- Data as downloaded from the source
│ └── README.md <- Data details, e.g., URL, date of download, name, etc.
│
├── saved/
│ ├── log/ <- Log information
│ └── models/ <- Checkpoints and final models
│
├── src/
│ ├── model/ <- Source code for your own model
│ └── scripts/
│ │ ├── data/ <- scripts and programs to process data
│ │ ├── visualization/ <- Scripts for visualisation of your outputs
│ │ └── test/ <- The results of your analysis
│ │
│ └── utils/ <- Helpers and utilities used
│
├── README.md <- description and how to use the project
├── Pipfile <- requirements for the dedicated environmnet
├── .pre-commit-config.yaml <- configuration of pre-commit
├── LICENSE <- license details
└── .gitignore
pipenv install
pre-commit install
pipenv shell
pipenv -e . # install the project as editable
- Implementation of a Run all script for complete reproducibility
- Similar to rails to create the project template and associated environment:
project new <project-new>
- Docker containers for servers?
This project is licensed under the MIT License. See LICENSE for more details
Thanks to Cookiecutter Data Science project , Pytorch project template and Tania Sanchez Monroy's presentation.