Aggragrating Nested Transformer Official Jax Implementation
NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet benchmark. NesT can be scaled to small datasets to match convnet accuracy.
This is not an officially supported Google product.
Model | Accuracy | Checkpoint path |
---|---|---|
Nest-B | 83.8 | gs://gresearch/nest-checkpoints/nest-b_imagenet |
Nest-S | 83.3 | gs://gresearch/nest-checkpoints/nest-s_imagenet |
Nest-T | 81.5 | gs://gresearch/nest-checkpoints/nest-t_imagenet |
Note: Accuracy is evaluated on the ImageNet2012 validation set.
See ImageNet training logs at Tensorboard.dev.
virtualenv -p python3 --system-site-packages nestenv
source nestenv/bin/activate
pip install -r requirements.txt
At the first time, download ImageNet following tensorflow_datasets
instruction
from command lines. Optionally, download all pre-trained checkpoints
bash ./checkpoints/download_checkpoints.sh
Run the evaluation script to evaluate NesT-B.
python main.py --config configs/imagenet_nest.py --config.eval_only=True \
--config.init_checkpoint="./checkpoints/nest-b_imagenet/ckpt.39" \
--workdir="./checkpoints/nest-t_imagenet_eval"
The default configuration trains NesT-B on TPUv2 8x8 with per device batch size 16.
python main.py --config configs/imagenet_nest.py --jax_backend_target=<TPU_IP_ADDRESS> --jax_xla_backend="tpu_driver" --workdir="./checkpoints/nest-b_imagenet"
Note: See jax/cloud_tpu_colab for info about TPU_IP_ADDRESS.
python main.py --config configs/imagenet_nest_tiny.py --workdir="./checkpoints/nest-t_imagenet_8gpu"
The codebase does not support multi-node GPU training (>8 GPUs). The models reported in our paper is trained using TPU with 1024 total batch size.
# Recommend to train on 2 GPUs. Training NesT-T can use 1 GPU.
CUDA_VISIBLE_DEVICES=0,1 python main.py --config configs/cifar_nest.py --workdir="./checkpoints/nest_cifar"
@inproceedings{zhang2021aggregating,
title={Aggregating Nested Transformers},
author={Zizhao Zhang and Han Zhang and Long Zhao and Ting Chen and Tomas Pfister},
booktitle={arXiv preprint arXiv:2105.12723},
year={2021}
}