This code requires Pytorch 1.10.0 and torchvision 0.11.0 or higher with cuda support.
mini-ImageNet
Model | 5-way 1-shot | 5-way 5-shot |
---|---|---|
ProtoNet | 62.39±0.21 | 80.53±0.14 |
Poodle* | 74.21 | 83.71 |
Our | 65.39±0.61 | 81.28±0.43 |
Our* | 76.82±0.41 | 82.93±0.38 |
tiered-ImageNet
Model | 5-way 1-shot | 5-way 5-shot |
---|---|---|
ProtoNet | 68.23±0.23 | 84.03±0.16 |
Poodle* | 78.72 | 86.57 |
Our | 70.03±0.72 | 84.53±0.49 |
Our* | 84.41±0.40 | 86.15±0.36 |
Download mini-ImageNet, tiered-ImageNet and CUB dataset and put them into ./
.
For example, to train the 1-shot/5-shot 5-way model with ProtoNet backbone on MiniImageNet:
python ./Mini_imageNet/pre_train_improve_k.py
to train the 1-shot/5-shot 5-way model with ProtoNet backbone on tieredImageNet:
python ./Tiered_imagenet/pre_train_improve_k.py