- Few-shot-datasets folder: store datasets including
MiniImageNet
,TieredImageNet
,CIFAR-FS
- data folder: codes to preprocess and load dataset
- models folder and qpth model: embedding network
- experiments folde: store checkpoints, test results, log file, figures
- test.py: test model
- train.py: train model
- utils.py: utilities
- Pytorch
- Python
- CUDA
- Numpy
- Matplotlib
- Goldblum, M., Fowl, L., and Goldstein, T. Adversarially robust few-shot learning: A meta-learning approach.Advances in Neural Information Processing Systems, 33,2020.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385
- Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, Kaiming He Feature Denoising for Improving Adversarial Robustness. arXiv:1812.03411
- MIT License
@inproceedings{
liu2021longterm,
title={Long-term Cross Adversarial Training: A Robust Meta-learning Method for Few-shot Classification Tasks },
author={Fan Liu and Shuyu Zhao and Xuelong Dai and Bin Xiao},
booktitle={ICML 2021 Workshop on Adversarial Machine Learning},
year={2021},
url={https://openreview.net/forum?id=RVlevnrbjnU}
}