PENGERTIAN MATEMATIKA DISKRIT Matematika diskrit adalah cabang matematika yang mengkaji objek-objek diskrit. Benda disebut diskrit jika ia terdiri dari sejumlah berhingga elemen yang berbeda atau elemen-elemen yang tidak berkesinambungan. Himpunan bilangan bulat (integer) dipandang sebagai objek diskrit. Lawan kata diskrit adalah kontinyu atau menerus. Himpunan bilangan riil (real) adalah suatu objek kontinu. Di dalam matematika kita mengenal fungsi diskrit dan fungsi kontinu. Fungsi diskrit digambarkan sebagai sekumpulan titik-titik, sedangkan fungsi kontinu digambarkan sebagai kurva. Matematika diskrit berkembang sangat pesat dalam dekade terakhir ini. Salah satu alasan yang menyebabkan perkembangan pesat itu adalah karena komputer digital bekerja secara diskrit. Informasi yang disimpan dan dimanipulasi oleh komputer adalah dalam bentuk diskrit. Salah satu materi di dalam matematika diskrit ini adalah teori bilangan bulat. Sesuai dengan namanya, teori bilangan bulat sangat erat hubungannya dengan bilangan bulat. Bilangan bulat itu sendiri adalah bilangan yang tidak mempunya pecahan desimal, misalnya adalah 2, 43, 566, -64, 0 dan sebagainnya. Teori bilangan bulat dalam matematika diskrit memberikan penekanan dengan sifat pembagian. Sifat pembagian pada bilangan bulat melahirkan konsep-konsep seperti bilangan prima dan aritmatika modulo. Satu algoritma penting yang berhubungan dengan sifat pembagian ini adalah algoritma Euclidean. Baik bilangan prima, aritmatika modulo, dan algoritma Euclidean memainkan peran yang penting dalam bidang ilmu Kriptografi, yaitu ilmu yang mempelajari kerahasiaan pesan.