Predicting base editing outcomes of 63 base editors
- If downloading models for use, please download them directly from the release note.
Python 3.6.13
Python Packages:
numpy 1.19.5
pandas 1.3.0
Tensorflow and dependencies:
Tensorflow 2.6.2
CUDA 11.2.0
cuDNN 8.1.0
-
Predicting on-target efficiencies of 9 SpCas9 variants (SpCas9, VRQR variant, SpCas9-NG, SpCas9-NRRH, SpCas9-NRTH, SpCas9-NRCH, SpG, SpRY, Sc++)
-
PAM_variant feature: SpCas9 - 0, VRQR variant - 1, SpCas9-NG - 2, SpCas9-NRRH - 3, SpCas9-NRTH - 4, SpCas9-NRCH - 5, SpG - 6, SpRY - 7, Sc++ - 8
-
Input1:
./input_example.csv
# List of Target Sequence(s)- File format:
Target number 30 bp target sequence (4 bp + 20 bp protospacer + PAM + 3 bp), PAM_variant feature
GGATGACTACGCCTCTGCCTTagtAGGTCA, 2
-
Input2:
./PAM_variant_(*Cas9_variant_name)_model.h5
# Pre-trained Model Files -
Output: ./prediction_result.xlsx
target + PAM feature Prediction score
GGATGACTACGCCTCTGCCTTagtAGGTCA 1 42.5612144470215
- Run script:
python ./PAM_variant_(*Cas9_variant_name).py
-
Predicting base editing outcomes of 7 base editors with SpCas9-NG
-
ABE: SpCas9-NG-ABE8e(V106W), SpCas9-NG-ABE8.17m+V106W
-
CBE: SpCas9-NG-YE1-BE4max, SpCas9-NG-SsAPOBEC3B
-
CGBE: SpCas9-NG-CGBE1, SpCas9-NG-miniCGBE1, SpCas9-NG-APOBEC-nCas9-Ung
-
Input1:
./input_example.csv
# List of Target Sequence(s)- File format:
Target number 30 bp target sequence (4 bp + 20 bp protospacer + PAM + 3 bp), PAM_variant feature
GGATGAACAACAAACTGCCTTAGTAGGTCA, 2
-
Input2:
./DeepNG-BE_(*base_editor_name)_model/
# Pre-trained Model Files -
Output: ./prediction_result.xlsx
target + PAM edited output PAM_variant Prediction score
GGATGAACAACAAACTGCCTTAGTAGGTCA GGATGAACAACAAgCTGCCTTAGTAGGTCA 2 0.00129620986990631
GGATGAACAACAAACTGCCTTAGTAGGTCA GGATGAACAACAgACTGCCTTAGTAGGTCA 2 0.000881725805811584
GGATGAACAACAAACTGCCTTAGTAGGTCA GGATGAACAACAggCTGCCTTAGTAGGTCA 2 0.0000012952218639839
...
- Run script:
python ./DeepNG-BE_(*base_editor_name).py
-
Predicting base editing outcomes of 63 base editors
-
SpCas9 variants: SpCas9, VRQR variant, SpCas9-NG, SpCas9-NRRH, SpCas9-NRTH, SpCas9-NRCH, SpG, SpRY, Sc++
-
ABE: ABE8e(V106W), ABE8.17m+V106W
-
CBE: YE1-BE4max, SsAPOBEC3B
-
CGBE: CGBE1, miniCGBE1, APOBEC-nCas9-Ung
-
Input1:
./input_example.csv
# List of Target Sequence(s)- File format:
Target number 30 bp target sequence (4 bp + 20 bp protospacer + PAM + 3 bp), PAM_variant feature
GGATGAACAACAAACTGCCTTAGTAGGTCA, 5
-
Input2:
./DeepBE_(*base_editor_name)_model/
# Pre-trained Model Files -
Output: ./prediction_result.xlsx
Output: ./prediction_result.xlsx
target + PAM edited output PAM_variant Prediction score
GGATGAACAACAAACTGCCTTAGTAGGTCA GGATGAACAACAAgCTGCCTTAGTAGGTCA 2 0.00635114079341292
GGATGAACAACAAACTGCCTTAGTAGGTCA GGATGAACAACAgACTGCCTTAGTAGGTCA 2 0.0043202587403357
GGATGAACAACAAACTGCCTTAGTAGGTCA GGATGAACAACAggCTGCCTTAGTAGGTCA 2 6.34630623608246E-06
...
- Run script:
python ./DeepBE_(*base_editor_name).py