/RandomForestML

Primary LanguageJupyter Notebook

RandomForestML

DT

from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier Dclassifier = DecisionTreeClassifier(criterion = 'gini', random_state = 50) Dclassifier.fit(X_train, y_train)

pred=Dclassifier.predict(X_test) from sklearn.metrics import accuracy_score accuracy_score(y_test, pred)

from sklearn import tree plt.figure(figsize=(15,10)) tree.plot_tree(Dclassifier,filled=True)

NAIVE Bayes's theorem

NB = GaussianNB() NB.fit(X_train, y_train)