This repository contains PyTorch implementation of the following paper: Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection [1]
- First clone the repository
git clone https://github.com/samet-akcay/skip-ganomaly.git
- Create the virtual environment via conda
conda create -n skipganomaly python=3.7
- Activate the virtual environment.
conda activate skipganomaly
- Install the dependencies.
pip install --user --requirement requirements.txt
To replicate the results in the paper for CIFAR10 dataset, run the following commands:
# CIFAR
sh experiments/run_cifar.sh
To list the arguments, run the following command:
python train.py -h
To train the model on CIFAR10 dataset for a given anomaly class, run the following:
python train.py \
--dataset cifar10 \
--niter <number-of-epochs> \
--abnormal_class \
<airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck> \
--display # optional if you want to visualize
To train the model on a custom dataset, the dataset should be copied into ./data
directory, and should have the following directory & file structure:
Custom Dataset
├── test
│ ├── 0.normal
│ │ └── normal_tst_img_0.png
│ │ └── normal_tst_img_1.png
│ │ ...
│ │ └── normal_tst_img_n.png
│ ├── 1.abnormal
│ │ └── abnormal_tst_img_0.png
│ │ └── abnormal_tst_img_1.png
│ │ ...
│ │ └── abnormal_tst_img_m.png
├── train
│ ├── 0.normal
│ │ └── normal_tst_img_0.png
│ │ └── normal_tst_img_1.png
│ │ ...
│ │ └── normal_tst_img_t.png
Then model training is the same as the training explained above.
python train.py \
--dataset <name-of-the-data> \
--isize <image-size> \
--niter <number-of-epochs> \
--display # optional if you want to visualize
For more training options, run python train.py -h
.
If you use this repository or would like to refer the paper, please use the following BibTeX entry
@INPROCEEDINGS {Akcay2019SkipGANomaly,
author = "Samet Akçay and Amir Atapour-Abarghouei andToby P. Breckon",
title = "Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection",
booktitle = "2019 International Joint Conference on Neural Networks (IJCNN)",
year = "2019",
pages = "1-8",
month = "jul",
publisher = "IEEE"
}
[1] S. Akçay, A. Atapour-Abarghouei, T. P. Breckon, Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection, in: International Joint Conference on Neural Networks (IJCNN), IEEE, 2019.