-
models/deformable_detrtrack_train_hybrid_branch.py
-
models/deformable_transformer_track_hybrid_branch.py
-
engine_track.py
-
main_track.py
Model | MOTA% | IDF1% | FN | Checkpoint |
---|---|---|---|---|
TransTrack | 67.1 | 70.3 | 15820 | model |
TransTrack (Our repro.) | 67.1 | 68.1 | 15680 | model |
H-TransTrack | 68.7 | 68.3 | 13657 | model |
Model | MOTA% | IDF1% | FN | Checkpoint |
---|---|---|---|---|
TransTrack | 74.5 | 63.9 | 112137 | model |
H-TransTrack | 75.7 | 64.4 | 91155 | model |
- Linux, CUDA>=9.2, GCC>=5.4
- Python>=3.7
- PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
- OpenCV is optional and needed by demo and visualization
- Prepare datasets and annotations
mkdir crowdhuman
cp -r /path_to_crowdhuman_dataset/CrowdHuman_train crowdhuman/CrowdHuman_train
cp -r /path_to_crowdhuman_dataset/CrowdHuman_val crowdhuman/CrowdHuman_val
mkdir mot
cp -r /path_to_mot_dataset/train mot/train
cp -r /path_to_mot_dataset/test mot/test
CrowdHuman dataset is available in CrowdHuman.
python3 track_tools/convert_crowdhuman_to_coco.py
MOT dataset is available in MOT.
python3 track_tools/convert_mot_to_coco.py
- Pre-train on crowdhuman
sh configs/<path_to_config_file>.sh
- Train H-TransTrack
sh configs/<path_to_config_file>.sh
- Evaluate TransTrack
sh configs/<path_to_config_file>.sh
- Visualize TransTrack
python3 track_tools/txt2video.py
@article{jia2022detrs,
title={DETRs with Hybrid Matching},
author={Jia, Ding and Yuan, Yuhui and He, Haodi and Wu, Xiaopei and Yu, Haojun and Lin, Weihong and Sun, Lei and Zhang, Chao and Hu, Han},
journal={arXiv preprint arXiv:2207.13080},
year={2022}
}
@article{sun2020transtrack,
title={Transtrack: Multiple object tracking with transformer},
author={Sun, Peize and Cao, Jinkun and Jiang, Yi and Zhang, Rufeng and Xie, Enze and Yuan, Zehuan and Wang, Changhu and Luo, Ping},
journal={arXiv preprint arXiv:2012.15460},
year={2020}
}