Our ROB535 final project focus on comparing performance of three different 3D detection models on nuScenes dataset. The voxelnext is implemented based on OpenPCDet, the PointPillars and CenterPoint are implemented based on the mmdetection3D. All models evaluated on the validation set of nuScenes V1.0.
-
Installation Follow the instruction in VoxelNext and mmdetection3D to install required environment
-
Data Preparation Download nuScenes dataset from official website.
Install the nuscenes-devkit with version 1.0.5 by running the following command:
pip install nuscenes-devkit==1.0.5
For OpenPCDet
python -m pcdet.datasets.nuscenes.nuscenes_dataset --func create_nuscenes_infos \ --cfg_file tools/cfgs/dataset_configs/nuscenes_dataset.yaml \ --version v1.0-trainval
For mmdetection3D
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
-
Download pretrained weight from official repo
-
Run evaluate python file For VoxelNext
bash VoxelNeXt/tools/scripts/dist_test.sh 4 --cfg_file VoxelNeXt/tools/cfgs/nuscenes_models/cbgs_voxel0075_voxelnext.yaml --ckpt path/to/pretain_model
For CenterPoint and PointPillar
CONFIG_FILE=mmdetection3d/configs/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_4x8_cyclic_20e_nus.py CONFIG_FILE=mmdetection3d/configs/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py /tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} --format-only --eval-options 'jsonfile_prefix=${OUTPUT_PREFIX}'
evalution metrics in nuscenes format could be gained by run
python eval_metric.py