Learning with Unreliability: Fast Few-shot Voxel Radiance Fields with Relative Geometric Consistency (CVPR2024)
git clone https://github.com/HKCLynn/ReVoRF.git
cd ReVoRF
pip install -r requirements.txt
Pytorch and torch_scatter installation is machine dependent.
NeRF Synthetic Dataset and LLFF Dataset
(click to expand;)
data
├── nerf_synthetic
│ └── [chair|drums|ficus|hotdog|lego|materials|mic|ship]
│ ├── [train|val|test]
│ │ └── r_*.png
│ └── transforms_[train|val|test].json
│
├── nerf_llff_data
└── [fern|flower|fortress|horns|leaves|orchids|room|trex]
-
Get Depth Maps
If the datasets are set in the above formats. Get DPT model and generate the depth maps.
$ python download.py
-
Training
$ python run.py --config configs/nerf/hotdog.py --render_test
-
Evaluation
$ python run.py --config configs/nerf/hotdog.py --render_only --render_test \ --eval_ssim --eval_lpips_vgg
The code is heavily based on DVGOv2 implementation, and some functions are modified from VGOS. Thank you!