This is the implementation of our submission to Emo-Context. You can find our paper here. Shared task website: https://www.humanizing-ai.com/emocontext.html
This code has been written using PyTorch >= 1.0. If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:
@inproceedings{winata-etal-2019-caire, title = "{CA}i{RE}{\_}{HKUST} at {S}em{E}val-2019 Task 3: Hierarchical Attention for Dialogue Emotion Classification", author = "Winata, Genta Indra and Madotto, Andrea and Lin, Zhaojiang and Shin, Jamin and Xu, Yan and Xu, Peng and Fung, Pascale", booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation", month = jun, year = "2019", address = "Minneapolis, Minnesota, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/S19-2021", pages = "142--147", }
Detecting emotion from dialogue is a challenge that has not yet been extensively surveyed. One could consider the emotion of each dialogue turn to be independent, but in this paper, we introduce a hierarchical approach to classify emotion, hypothesizing that the current emotional state depends on previous latent emotions. We benchmark several feature-based classifiers using pre-trained word and emotion embeddings, state-of-the-art end-to-end neural network models, and Gaussian processes for automatic hyper-parameter search. In our experiments, hierarchical architectures consistently give significant improvements, and our best model achieves a 76.77% F1-score on the test set.
You can find the data in Linkedin page.
To begin, you need to install libraries and their dependencies
bash setup.sh
model
:LSTM
orUTRS
(Universal Transformer)attn
:True
(to add word-level attention)fix_pretrain
:True
(To avoid any update on pretrained embedding)--dev_with_label
: to evaluate with a development set--include_test
: to merge train and development set, split the merged dataset, and construct a new set of train and development set. The model will be evaluated with a test set
❱❱❱ python3 main.py --num_split 10 --max_epochs=100 --pretrain_list glove840B~300 --emb_dim 300 --cuda --hidden_dim 1000 --model LSTM --patient 5 --drop 0.1 --model LSTM --noam --save_path save_final/LSTM_1000_DROP0.1_ATTN_GLOVE/ --pretrain_emb --attn
❱❱❱ python3 main_hier.py --num_split 10 --max_epochs=100 --pretrain_list glove840B~300 --emb_dim 300 --cuda --hidden_dim 1000 --model LSTM --patient 5 --drop 0.1 --model LSTM --noam --save_path save_final/HLSTM_1000_DROP0.1_GLOVE/ --pretrain_emb
--pred_file_path
: prediction file path, --ground_file_path
: ground truth file path
❱❱❱ python3 eval.py --pred_file_path save/HLSTM_1000_DROP0.4_ALL_ATTN/test_voting.txt --ground_file_path data/dev.txt
--load_model_path
: trained model path, --save_path
: prediction file path
❱❱❱ python3 predict.py --load_model_path save/TEST2/model_0 --cuda --save_path save/TEST2/
❱❱❱ python3 predict_hier.py --load_model_path save/HLSTM_1000_DROP0.4_ATTN_DOUBLE_0.1_GLOVE/model_5 --cuda --double_supervision --save_prediction_path save_final/HLSTM_1000_DROP0.4_ATTN_DOUBLE_0.1_GLOVE/model_5.txt --save_confidence_path save_final/HLSTM_1000_DROP0.4_ATTN_DOUBLE_0.1_GLOVE/model_5_confidence.txt
❱❱❱ python3 voting.py --voting-dir-list save_final/HLSTM_1000_DROP0.4_ATTN_DOUBLE_0.1_GLOVE save_final/HLSTM_1000_DROP0.1_ATTN_DOUBLE_0.1_GLOVE --save_path voting_prediction.txt
Feel free to create an issue or send email to giwinata@connect.ust.hk