This repository contains the implementation of the paper.
If you find our work useful, Please give us a star π!
LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction using LiDAR and Camera
Yukai Ma1,2, Jianbiao Mei1,2, Xuemeng Yang2, Licheng Wen2, Weihua Xu1, Jiangning Zhang1, Xingxing Zuo3, Botian Shi2,^, Yong Liu1,^
1ZJU 2PJLab3TUM
^Corresponding Authors
π [2024/11/06] LiCROcc was accepted by RAL!!!
# Create a conda virtual environment and activate it.
conda create -n licrocc python=3.8 -y
conda activate licrocc
# Install torch
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f ttps://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
# Install mmdet3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v0.17.1 # Other versions may not be compatible.
pip install -v -e .
#
cd ../projects
pip install -v -e .
-Please refer to OpenOccupancy to prepare nuScenes dataset.
- Please refer to CRN to generate radar point cloud in BEV view.
python scripts/gen_radar_bev.py # accumulate sweeps and transform to LiDAR coords
Folder structure:
LiCROcc
βββ data/
β βββ nuscenes/
β β βββ maps/
β β βββ samples/
β β βββ sweeps/
β β βββ lidarseg/
β β βββ v1.0-test/
β β βββ v1.0-trainval/
β β βββ nuscenes_occ_infos_train.pkl
β β βββ nuscenes_occ_infos_val.pkl
β β βββ radar_bev_filter/
β βββ nuScenes-Occupancy/
β βββ depth_gt/
Download Teacher model here
Train RC-LiCROcc
./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py N_GPUs
Train R-LiCROcc
./tools/dist_train.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py N_GPUs
If an error is reported during trainingοΌ
TypeError: FormatCode() got an unexpected keyword argument 'verify'
Simply remove βverify=Trueβ
Eval RC-LiCROcc
./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2LR123.py ./path/to/ckpts.pth N_GPUs
Eval R-LiCROcc
./tools/dist_test.sh ./projects/configs/ssc_rs/ssc_rs_base_nuscenes_LC2radar12.py ./path/to/ckpts.pth N_GPUs
Visualization
Temporarily only support saving occupancy predictions (refer to MonoScene for visualization tools)
./tools/dist_test.sh $PATH_TO_CFG $PATH_TO_CKPT $GPU_NUM --show --show-dir $PATH
Subset | Checkpoint | Logs | Note |
---|---|---|---|
RC-LiCROcc | link | link | train on 8 A100 |
R-LiCROcc | link | link | train on 8 A100 |
@misc{ma2024licroccteachradaraccurate,
title={LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction using LiDAR and Camera},
author={Yukai Ma and Jianbiao Mei and Xuemeng Yang and Licheng Wen and Weihua Xu and Jiangning Zhang and Botian Shi and Yong Liu and Xingxing Zuo},
year={2024},
eprint={2407.16197},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.16197},
}
We adopt the following open-sourced projects: