/HHCH

Implementation of Exploring hierarchical information in hyperbolic space for self-supervised image hashing

Primary LanguagePython

HHCH

Implementation of Exploring hierarchical information in hyperbolic space for self-supervised image hashing

Dataset Preparation

datasetclass_numlabel typesource
ImageNet100singlesource#
COCO80multisource#
NUS-WIDE21multisource#
NIRFlickr-25K24multisource
VOC201220multisource
CIFAR-1010singlesource

Run

python main.py --hyper_c 0.1 --data_name imagenet --data_path xxxx --lambda_q 0.01 --lr 0.0001 --hash_bit 64 --batch_size 64 --R 1000 --start_eval 40 --eval_epochs 2 --epochs 60   --cluster_num 1500,1000,800 --HIC  --HPC

Citation

@ARTICLE{HHCH2024TIP,
  author={Wei, Rukai and Liu, Yu and Song, Jingkuan and Xie, Yanzhao and Zhou, Ke},
  journal={IEEE Transactions on Image Processing}, 
  title={Exploring Hierarchical Information in Hyperbolic Space for Self-Supervised Image Hashing}, 
  year={2024},
  volume={33},
  number={},
  pages={1768-1781},
  doi={10.1109/TIP.2024.3371358}}