/LDReg

[ICLR2024] LDReg: Local Dimensionality Regularized Self-Supervised Learning

Primary LanguagePythonMIT LicenseMIT

LDReg: Local Dimensionality Regularized Self-Supervised Learning

Code for ICLR2024 paper "LDReg: Local Dimensionality Regularized Self-Supervised Learning"


LDReg

# Method of Moments estimation of LID
def lid_mom_est(data, reference, k, get_idx=False, 
                compute_mode='use_mm_for_euclid_dist_if_necessary'):
    b = data.shape[0]
    k = min(k, b-2)
    data = torch.flatten(data, start_dim=1)
    reference = torch.flatten(reference, start_dim=1)
    r = torch.cdist(data, reference, p=2, compute_mode=compute_mode)
    a, idx = torch.sort(r, dim=1)
    m = torch.mean(a[:, 1:k], dim=1)
    lids = m / (a[:, k] - m)
    if get_idx:
        return idx, lids
    return lids

# features: representations that need LID to be estimated. 
# reference: reference representations, usually, the same batch of representations can be used. 
# k: locality parameter, the neighbourhood size. 
# NOTE: features and reference should be in the same dimension.

lids = lid_mom_est(data=features, reference=reference.detach(), k=k)
reg_loss = - torch.log(lids)  # Eq (1) of the paper. 
        

Reproduce results from the paper

We provide configuration files in the configs folder. Details of all necessary hyperparameters are also in the Appendix of the paper.

Pretrained models are available here in this Google Drive folder.

An example of how to run pretraing is the following:

srun python3 main_simclr.py --ddp --dist_eval                  \
                            --exp_path path/to/exp/folder      \
                            --exp_config path/to/config/folder \
                            --exp_name pretrain     

An example of how to run linear probing:

srun python3 main_linear_prob.py --ddp --dist_eval                  \
                                 --exp_path path/to/exp/folder      \
                                 --exp_config path/to/config/folder \
                                 --exp_name linear_prob          

Citation

If you use this code in your work, please cite the accompanying paper:

@inproceedings{huang2024ldreg,
  title={LDReg: Local Dimensionality Regularized Self-Supervised Learning},
  author={Hanxun Huang and Ricardo J. G. B. Campello and Sarah Monazam Erfani and Xingjun Ma and Michael E. Houle and James Bailey},
  booktitle={ICLR},
  year={2024}
}

Part of the code is based on the following repo: