Haobo Yuan1, Xiangtai Li1, Chong Zhou1, Yining Li2, Kai Chen2, Chen Change Loy1.
1S-Lab, Nanyang Technological University, 2Shanghai Artificial Intelligence Laboratory
RWKV-SAM Arxiv
Haobo Yuan1, Xiangtai Li2,1, Tao Zhang2, Lu Qi3, Ming-Hsuan Yang3, Shuicheng Yan2, Chen Change Loy1.
1S-Lab, Nanyang Technological University, 2SkyworkAI 3UC Merced
Jul. 2, 2024
: Open-Vocabulary SAM has been accepted by ECCV 2024.Jun. 27, 2024
: Release RWKV-SAM code and model Paper. Please check out the folder.
We introduce the Open-Vocabulary SAM, a SAM-inspired model designed for simultaneous interactive segmentation and recognition, leveraging two unique knowledge transfer modules: SAM2CLIP and CLIP2SAM. The former adapts SAM's knowledge into the CLIP via distillation and learnable transformer adapters, while the latter transfers CLIP knowledge into SAM, enhancing its recognition capabilities.
To play with Open-Vocabulary SAM, you can:
- Try the online demo on the π€Hugging Face Space. Thanks for the generous support of the Hugging Face team.
- Run the gradio demo locally by cloning and running the repo on π€Hugging Face:
git lfs install git clone https://huggingface.co/spaces/HarborYuan/ovsam ovsam_demo cd ovsam_demo conda create -n ovsam_demo python=3.10 && conda activate ovsam_demo python -m pip install gradio==4.7.1 python -m pip install -r requirements.txt python main.py
- Try to train or evaluate in this repo following the instructions below.
We use conda to manage the environment.
Pytorch installation:
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 cuda -c pytorch -c "nvidia/label/cuda-12.1.0" -c "nvidia/label/cuda-12.1.1"
mmengine installation:
python -m pip install https://github.com/open-mmlab/mmengine/archive/refs/tags/v0.8.5.zip
mmcv installation (note that older version mmcv before this commit may cause bugs):
TORCH_CUDA_ARCH_LIST="{COMCAP}" TORCH_NVCC_FLAGS="-Xfatbin -compress-all" CUDA_HOME=$(dirname $(dirname $(which nvcc))) LD_LIBRARY_PATH=$(dirname $(dirname $(which nvcc)))/lib MMCV_WITH_OPS=1 FORCE_CUDA=1 python -m pip install git+https://github.com/open-mmlab/mmcv.git@4f65f91db6502d990ce2ee5de0337441fb69dd10
Please ask ChatGPT to get COMCAP
:
What is the `Compute Capability` of NVIDIA {YOUR GPU MODEL}? Please only output the number, without text.
Other OpenMMLab packages:
python -m pip install \
https://github.com/open-mmlab/mmdetection/archive/refs/tags/v3.1.0.zip \
https://github.com/open-mmlab/mmsegmentation/archive/refs/tags/v1.1.1.zip \
https://github.com/open-mmlab/mmpretrain/archive/refs/tags/v1.0.1.zip
Extra packages:
python -m pip install git+https://github.com/cocodataset/panopticapi.git \
git+https://github.com/HarborYuan/lvis-api.git \
tqdm terminaltables pycocotools scipy tqdm ftfy regex timm scikit-image kornia
Datasets should be put in the data/
folder of this project similar to mmdet. Please prepare dataset in the following format.
βββ coco
β βββ annotations
β β βββ panoptic_{train,val}2017.json
β β βββ instance_{train,val}2017.json
β βββ train2017
β βββ val2017
β βββ panoptic_{train,val}2017/ # png annotations
βββ sam
β βββ train.txt
β βββ val.txt
β βββ sa_000020
β β βββ sa_223750.jpg
β β βββ sa_223750.json
β β βββ ...
β βββ ...
train.txt
and val.txt
should contain all the folders you need:
sa_000020
sa_000021
...
Please extract the language embeddings first.
bash tools/dist.sh gen_cls seg/configs/ovsam/ovsam_coco_rn50x16_point.py 8
SAM feature extraction:
bash tools/dist.sh test seg/configs/sam2clip/sam_vith_dump.py 8
SAM2CLIP training:
bash tools/dist.sh train seg/configs/sam2clip/sam2clip_vith_rn50x16.py 8
CLIP2SAM training:
bash tools/dist.sh train seg/configs/clip2sam/clip2sam_coco_rn50x16.py 8
bash tools/dist.sh test seg/configs/ovsam/ovsam_coco_rn50x16_point.py 8
Please refer to π€Hugging Face to get the pre-trained weights:
git clone https://huggingface.co/HarborYuan/ovsam_models models
See readme.md for the details.
If you think our codebases and works are useful for your research, please consider referring us:
@inproceedings{yuan2024ovsam,
title={Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively},
author={Yuan, Haobo and Li, Xiangtai and Zhou, Chong and Li, Yining and Chen, Kai and Loy, Chen Change},
booktitle={ECCV},
year={2024}
}
@article{yuan2024mamba,
title={Mamba or RWKV: Exploring High-Quality and High-Efficiency Segment Anything Model},
author={Yuan, Haobo and Li, Xiangtai and Qi, Lu and Zhang, Tao and Yang, Ming-Hsuan and Yan, Shuicheng and Loy, Chen Change},
journal={arXiv preprint},
year={2024}
}
This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.