/ovsam

[ECCV 2024] The official code of paper "Open-Vocabulary SAM".

Primary LanguagePythonOtherNOASSERTION

Open-Vocabulary SAM [ECCV-2024]

Haobo Yuan1, Xiangtai Li1, Chong Zhou1, Yining Li2, Kai Chen2, Chen Change Loy1.

1S-Lab, Nanyang Technological University, 2Shanghai Artificial Intelligence Laboratory

arXiv Project Page HuggingFace Model Open in OpenXLab

RWKV-SAM Arxiv

Haobo Yuan1, Xiangtai Li2,1, Tao Zhang2, Lu Qi3, Ming-Hsuan Yang3, Shuicheng Yan2, Chen Change Loy1.

1S-Lab, Nanyang Technological University, 2SkyworkAI 3UC Merced

πŸ“° News

  • Jul. 2, 2024: Open-Vocabulary SAM has been accepted by ECCV 2024.
  • Jun. 27, 2024: Release RWKV-SAM code and model Paper. Please check out the folder.

πŸ‘€ Overview

We introduce the Open-Vocabulary SAM, a SAM-inspired model designed for simultaneous interactive segmentation and recognition, leveraging two unique knowledge transfer modules: SAM2CLIP and CLIP2SAM. The former adapts SAM's knowledge into the CLIP via distillation and learnable transformer adapters, while the latter transfers CLIP knowledge into SAM, enhancing its recognition capabilities.

OVSAM overview

πŸ”§Usage

To play with Open-Vocabulary SAM, you can:

  1. Try the online demo on the πŸ€—Hugging Face Space. Thanks for the generous support of the Hugging Face team.
  2. Run the gradio demo locally by cloning and running the repo on πŸ€—Hugging Face:
    git lfs install
    git clone https://huggingface.co/spaces/HarborYuan/ovsam ovsam_demo
    cd ovsam_demo
    conda create -n ovsam_demo python=3.10  && conda activate ovsam_demo
    python -m pip install gradio==4.7.1
    python -m pip install -r requirements.txt
    python main.py
    
  3. Try to train or evaluate in this repo following the instructions below.

βš™οΈ Installation

We use conda to manage the environment.

Pytorch installation:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 cuda -c pytorch  -c "nvidia/label/cuda-12.1.0" -c "nvidia/label/cuda-12.1.1"

mmengine installation:

python -m pip install https://github.com/open-mmlab/mmengine/archive/refs/tags/v0.8.5.zip

mmcv installation (note that older version mmcv before this commit may cause bugs):

TORCH_CUDA_ARCH_LIST="{COMCAP}" TORCH_NVCC_FLAGS="-Xfatbin -compress-all" CUDA_HOME=$(dirname $(dirname $(which nvcc))) LD_LIBRARY_PATH=$(dirname $(dirname $(which nvcc)))/lib MMCV_WITH_OPS=1 FORCE_CUDA=1 python -m pip install git+https://github.com/open-mmlab/mmcv.git@4f65f91db6502d990ce2ee5de0337441fb69dd10

Please ask ChatGPT to get COMCAP:

What is the `Compute Capability` of NVIDIA {YOUR GPU MODEL}? Please only output the number, without text.

Other OpenMMLab packages:

python -m pip install \
https://github.com/open-mmlab/mmdetection/archive/refs/tags/v3.1.0.zip \
https://github.com/open-mmlab/mmsegmentation/archive/refs/tags/v1.1.1.zip \
https://github.com/open-mmlab/mmpretrain/archive/refs/tags/v1.0.1.zip

Extra packages:

python -m pip install git+https://github.com/cocodataset/panopticapi.git \
git+https://github.com/HarborYuan/lvis-api.git \
tqdm terminaltables pycocotools scipy tqdm ftfy regex timm scikit-image kornia

πŸ“ˆ Datasets

Datasets should be put in the data/ folder of this project similar to mmdet. Please prepare dataset in the following format.

COCO dataset

β”œβ”€β”€ coco
β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”œβ”€β”€ panoptic_{train,val}2017.json
β”‚   β”‚   β”œβ”€β”€ instance_{train,val}2017.json
β”‚   β”œβ”€β”€ train2017
β”‚   β”œβ”€β”€ val2017
β”‚   β”œβ”€β”€ panoptic_{train,val}2017/  # png annotations

SAM dataset

β”œβ”€β”€ sam
β”‚   β”œβ”€β”€ train.txt
β”‚   β”œβ”€β”€ val.txt
β”‚   β”œβ”€β”€ sa_000020
β”‚   β”‚   β”œβ”€β”€ sa_223750.jpg
β”‚   β”‚   β”œβ”€β”€ sa_223750.json
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ ...

train.txt and val.txt should contain all the folders you need:

sa_000020
sa_000021
...

πŸš€ Training

Please extract the language embeddings first.

bash tools/dist.sh gen_cls seg/configs/ovsam/ovsam_coco_rn50x16_point.py 8

SAM2CLIP

SAM feature extraction:

bash tools/dist.sh test seg/configs/sam2clip/sam_vith_dump.py 8

SAM2CLIP training:

bash tools/dist.sh train seg/configs/sam2clip/sam2clip_vith_rn50x16.py 8

CLIP2SAM

CLIP2SAM training:

bash tools/dist.sh train seg/configs/clip2sam/clip2sam_coco_rn50x16.py 8

πŸƒβ€β™€οΈInference

bash tools/dist.sh test seg/configs/ovsam/ovsam_coco_rn50x16_point.py 8

Please refer to πŸ€—Hugging Face to get the pre-trained weights:

git clone https://huggingface.co/HarborYuan/ovsam_models models

RWKV-SAM

See readme.md for the details.

πŸ“š Citation

If you think our codebases and works are useful for your research, please consider referring us:

@inproceedings{yuan2024ovsam,
    title={Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively},
    author={Yuan, Haobo and Li, Xiangtai and Zhou, Chong and Li, Yining and Chen, Kai and Loy, Chen Change},
    booktitle={ECCV},
    year={2024}
}

@article{yuan2024mamba,
  title={Mamba or RWKV: Exploring High-Quality and High-Efficiency Segment Anything Model},
  author={Yuan, Haobo and Li, Xiangtai and Qi, Lu and Zhang, Tao and Yang, Ming-Hsuan and Yan, Shuicheng and Loy, Chen Change},
  journal={arXiv preprint},
  year={2024}
}

License

This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.