Unofficial demonstration of Huawei's Pangu Weather Model. Implementing the entire process of data preparation for input, forecasting conversion of forecasted results, and visualization.
【非官方】华为盘古天气模型演示,含输入数据准备、预测结果转换及结果可视化全流程。中文指南
- Register for an account at Climate Data Store
- Copy the url and key displayed on CDS API key and add them to the
~/.cdsapirc
file. - Clone this repo and install dependencies accordingly, depending on GPU availability.
git clone https://github.com/HaxyMoly/Pangu-Weather-ReadyToGo.git
cd Pangu-Weather-ReadyToGo
# GPU
pip install -r requirements_gpu.txt
# CPU
pip install -r requirements_cpu.txt
conda install -c conda-forge cartopy
- Download four pre-trained weights from Pangu-Weather and create a folder named
models
to put them in. Feel free to download only one of them for testing purposes.
mkdir models
- Modify the
date_time
of the initial field indata_prepare.py
.
date_time = datetime(
year=2023,
month=7,
day=9,
hour=23,
minute=0)
You may check the data availability at a specific moment by using
test_avaliable_time.py
.You would get something like this:The latest date available for this dataset is: 2023-07-13 13:00.
- Run
data_prepare.py
to download the initial field data and convert them to numpy array.
python data_prepare.py
- Modify the following variables in
inference.py
according to your needs:
# Enable GPU acceleration
use_GPU = True
# The date and time of the initial field
date_time = datetime(
year=2023,
month=7,
day=9,
hour=23,
minute=0)
# The date and time of the final approaches
date_time_final = datetime(
year=2023,
month=7,
day=17,
hour=23,
minute=0)
# Program auto choose model to use least interation to reach final time
- Execute
inference.py
to make forecast
python inference.py
- Modify the
date_time
andfinal_date_time
of the initial field inforecast_decode.py
# The date and time of the initial field
date_time = datetime(
year=2023,
month=7,
day=9,
hour=23,
minute=0)
# The date and time of the final approaches
date_time_final = datetime(
year=2023,
month=7,
day=17,
hour=23,
minute=0)
- After making the forecast, run
forecast_decode.py
to convert the numpy array back to NetCDF format
python forecast_decode.py
- Navigate to the forecasting directory to visualize the results
cd outputs/2023-07-09-23-00to2023-07-17-23-00
# Visualize the land surface forecast
ncvue output_surface.nc
# Visualize the upper air forecast
ncvue output_upper.nc
Don't forget to select the variable to be visualized.
Thanks Huawei team for their amazing meteorological forecasting model Pangu-Weather.
Thanks mcuntz for his/her wonderful open-source NetCDF visualization project ncvue.
I am a Bioinformatics student, not a meteorologist, so I cannot guarantee the accuracy of the code. Therefore, this project is only intended for reference and learning purposes. Additionally, this project is based on Pangu-Weather and follows its BY-NC-SA 4.0 license, and should not be used for commercial purposes. Please cite the publication of Pangu-Weather.
@Article{Bi2023,
author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},
title={Accurate medium-range global weather forecasting with 3D neural networks},
journal={Nature},
doi={10.1038/s41586-023-06185-3},
}
- 前往 Climate Data Store 注册一个账号
- 前往 CDS API key,复制url和key,写入
~/.cdsapirc
文件 - 克隆本仓库,根据是否有独显选择安装依赖
git clone https://github.com/HaxyMoly/Pangu-Weather-ReadyToGo.git
cd Pangu-Weather-ReadyToGo
# GPU
pip install -r requirements_gpu.txt
# CPU
pip install -r requirements_cpu.txt
conda install -c conda-forge cartopy
- 在 Pangu-Weather 下载4个预训练模型,创建一个名为
models
的文件夹,把它们放进去(也可以根据需要任意下载一个测试)
mkdir models
- 修改
data_prepare.py
中初始场的date_time
,
date_time = datetime(
year=2023,
month=7,
day=9,
hour=23,
minute=0)
某时刻数据可用性可运行
test_avaliable_time.py
来查询.你的输出会是这样的:The latest date available for this dataset is: 2023-07-13 13:00.
- 执行
data_prepare.py
下载初始场数据并转换为npy格式
python data_prepare.py
- 根据需要修改
inference.py
中以下变量
# 是否启用GPU加速
use_GPU = True
# 初始场时刻
date_time = datetime(
year=2023,
month=7,
day=9,
hour=23,
minute=0)
# 目标到达时刻
date_time_final = datetime(
year=2023,
month=7,
day=17,
hour=23,
minute=0)
# 程式会自动选择最少到达目标时间的模型组合
- 执行
inference.py
进行预测
python inference.py
- 修改
forecast_decode.py
中初始场时刻和目标到达时刻
# 初始场时刻
date_time = datetime(
year=2023,
month=7,
day=9,
hour=23,
minute=0)
# 目标到达时刻
date_time_final = datetime(
year=2023,
month=7,
day=17,
hour=23,
minute=0)
- 预测完成后,执行
forecast_decode.py
将npy转换回NetCDF格式
python forecast_decode.py
- 进入预测文件路径可视化结果
cd outputs/2023-07-09-23-00to2023-07-17-23-00
# 可视化预测地表数据
ncvue output_surface.nc
# 或可视化预测大气数据
ncvue output_upper.nc
华为团队开源的气象预测大模型 Pangu-Weather
mcuntz开源的优秀NetCDF可视化项目 ncvue
本人专业为生物信息学,并非气象专业人士,无法保证代码完全准确,因此该项目仅供参考交流学习。另该项目系基于 Pangu-Weather,因此亦遵循原项目的BY-NC-SA 4.0开源许可证,切勿用于商业目的。使用本项目请引用原项目
@Article{Bi2023,
author={Bi, Kaifeng and Xie, Lingxi and Zhang, Hengheng and Chen, Xin and Gu, Xiaotao and Tian, Qi},
title={Accurate medium-range global weather forecasting with 3D neural networks},
journal={Nature},
doi={10.1038/s41586-023-06185-3},
}