Predicting all of Rossmann's stores sales, six weeks ahead of time.
But before that, I need to understand the data. Inside the notebooks/
folder you will find, notebooks that
I created to cary out a deep exploration of different aspects of the data. This include intuiitive visualization
that make the understanding easier.
All the data Pipeline and model building scripts are in the src/
directory.
The log files generated by the different modules are kept in the logs/
directory
- Id - an Id that represents a (Store, Date) duple within the test set
- Store - a unique Id for each store
- Sales - the turnover for any given day (this is what you are predicting)
- Customers - the number of customers on a given day
- Open - an indicator for whether the store was open: 0 = closed, 1 = open
- StateHoliday - indicates a state holiday. Normally all stores, with few exceptions, are closed on state holidays. Note that all schools are closed on public holidays - and weekends. a = public holiday, b = Easter holiday, c = Christmas, 0 = None
- SchoolHoliday - indicates if the (Store, Date) was affected by the closure of public schools
- StoreType - differentiates between 4 different store models: a, b, c, d
- Assortment - describes an assortment level: a = basic, b = extra, c = extended
- CompetitionDistance - distance in meters to the nearest competitor store
- CompetitionOpenSince[Month/Year] - gives the approximate year and month of the time the nearest competitor was opened
- Promo - indicates whether a store is running a promo on that day
- Promo2 - Promo2 is a continuing and consecutive promotion for some stores: 0 = store is not participating, 1 = store is participating
- Promo2Since[Year/Week] - describes the year and calendar week when the store started participating in Promo2 PromoInterval - describes the consecutive intervals Promo2 is started, naming the months the promotion is started anew. E.g. "Feb,May,Aug,Nov" means each round starts - in February, May, August, November of any given year for that store