This repository contains a PyTorch implementation of the albert model from the paper
A Lite Bert For Self-Supervised Learning Language Representations
by Zhenzhong Lan. Mingda Chen....
- pytorch=1.10
- cuda=9.0
- cudnn=7.5
- scikit-learn
- sentencepiece
Official download links: google albert
Adapt to this version,download pytorch model (google drive):
v1
v2
1. Place config.json
and 30k-clean.model
into the prev_trained_model/albert_base_v2
directory.
example:
├── prev_trained_model
| └── albert_base_v2
| | └── pytorch_model.bin
| | └── config.json
| | └── 30k-clean.model
2.convert albert tf checkpoint to pytorch
python convert_albert_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path=./prev_trained_model/albert_base_tf_v2 \
--bert_config_file=./prev_trained_model/albert_base_v2/config.json \
--pytorch_dump_path=./prev_trained_model/albert_base_v2/pytorch_model.bin
3.run sh run_classifier_sst2.sh
to fine tuning albert model
Performance of ALBERT on GLUE benchmark results using a single-model setup on dev:
Cola | Sst-2 | Mnli | Sts-b | |
---|---|---|---|---|
metric | matthews_corrcoef | accuracy | accuracy | pearson |
model | Cola | Sst-2 | Mnli | Sts-b |
---|---|---|---|---|
albert_base_v2 | 0.5756 | 0.926 | 0.8418 | 0.9091 |
albert_large_v2 | 0.5851 | 0.9507 | 0.9151 | |
albert_xlarge_v2 | 0.6023 | 0.9221 |