/GNNforPhysics

Graph Neural Networks for Physics

Primary LanguageC++

GNNforPhysics

Graph Neural Networks for Physics

fork from https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate

# Download dataset (e.g. WaterRamps):
bash ./learning_to_simulate/download_dataset.sh WaterDrop ./tmp/datasets

{DATASET_NAME} one of the datasets following the naming used in the paper:

  1. WaterDrop
  2. Water
  3. Sand
  4. Goop
  5. MultiMaterial
  6. RandomFloor
  7. WaterRamps
  8. SandRamps
  9. FluidShake
  10. FluidShakeBox
  11. Continuous
  12. WaterDrop-XL
  13. Water-3D
  14. Sand-3D
  15. Goop-3D
# run jupyter in docker:
docker-compose up
# Train a model:
# Generate some trajectory rollouts on the test set:
# Plot a trajectory:

# edit dcx/docker-compose.yaml
cd dc0
docker-compose up
# Check model log by tensorboard:
tensorboard --logdir tmp/models

tensorboard image

  • WaterRamps(1000000step)
    • Example WaterRamps(1000000step) test_2
    • GRAPHS WaterRamps(1000000step) GRAPHS
    • SCALARS loss WaterRamps(1000000step) SCALARS loss