Graph Neural Networks for Physics
fork from https://github.com/deepmind/deepmind-research/tree/master/learning_to_simulate
# Download dataset (e.g. WaterRamps):
bash ./learning_to_simulate/download_dataset.sh WaterDrop ./tmp/datasets
{DATASET_NAME} one of the datasets following the naming used in the paper:
- WaterDrop
- Water
- Sand
- Goop
- MultiMaterial
- RandomFloor
- WaterRamps
- SandRamps
- FluidShake
- FluidShakeBox
- Continuous
- WaterDrop-XL
- Water-3D
- Sand-3D
- Goop-3D
# run jupyter in docker:
docker-compose up
# Train a model:
# Generate some trajectory rollouts on the test set:
# Plot a trajectory:
# edit dcx/docker-compose.yaml
cd dc0
docker-compose up
# Check model log by tensorboard:
tensorboard --logdir tmp/models
tensorboard image