/TIRE_pytorch

Pytorch implementation of TIRE for change point detection

Primary LanguageJupyter Notebook

PyTorch implementation of TIRE (UNOFFICIAL)

License

TIRE is an autoencoder-based change point detection algorithm for time series data that uses a TIme-Invariant Representation (TIRE). More information can be found in the 2020 preprint Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation.

Usage

from TIRE import DenseTIRE as TIRE
import torch
import numpy as np

seq_length = 4500
dim = 1
ts = np.random.randn(seq_length, dim)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TIRE(dim).to(device)

model.fit(ts, epoches=1)

dissimilarities, change_point_scores = model.predict(ts)

# plt.plot(dissimilarities)

Installation

pip install git+https://github.com/HolyBayes/TIRE_pytorch

Authors

@misc{ryck2020change,
title={Change Point Detection in Time Series Data using Autoencoders with a Time-Invariant Representation},
author={Tim De Ryck and Maarten De Vos and Alexander Bertrand},
year={2020},
eprint={2008.09524},
archivePrefix={arXiv},
primaryClass={cs.LG}}

Contacts

Artem Ryzhikov, LAMBDA laboratory, Higher School of Economics, Yandex School of Data Analysis

E-mail: artemryzhikoff@yandex.ru

Linkedin: https://www.linkedin.com/in/artem-ryzhikov-2b6308103/

Link: https://www.hse.ru/org/persons/190912317