CIFAR10-C (PyTorch)
Evaluating a model performance forPreparation
Download data
Download CIFAR10-C dataset from here.
(Optional) Set your model
A default model is ResNet56. it's model file is already contained in src/models/
.
If you use your custom model, please do the following procedure.
- Add your model file to
src/models/
. - Add a new model option to
test.py
.
Evaluation
# ResNet56 (default)
python src/test.py --weight_path <path/to/weight/file> --data_root <path/to/parent/directory/of/cifar10-c>
# Your custom model
python src/test.py --arch <your/model/name> --weight_path <path/to/weight/file> --data_root <path/to/parent/directory/of/cifar10-c>
Output
All corruption accuracy.
This figure will be saved in figs/
.
(Optional) Other Useful Options
fig_dir
: Specify the directory path to save an output figure.weight_dir
: Execute an evaluation for all weight files in the specified directory.corruptions
: Evaluate a model performance for the specified corruption types.