/DatasetFactorization

PyTorch implementation of paper "Dataset Distillation via Factorization" in NeurIPS 2022.

Primary LanguagePythonApache License 2.0Apache-2.0

Dataset Factorization

This is the pytorch implementation of the following NeurIPS 2022 paper:

Dataset Distillation via Factorization

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang.

Installation

  • Create a new environment if you want:

    conda create -n HaBa python=3.8
    conda activate HaBa
  • Clone the repo and install the required packages:

    git clone https://github.com/Huage001/DatasetFactorization.git
    cd DatasetFactorization
    pip install -r requirements.txt

Dataset Distillation

  • Install required packages:

    pip install -r requirements.txt
  • First, generate buffer of training trajectories using:

    python buffer.py --dataset=CIFAR10 --model=ConvNet --train_epochs=50 --num_experts=100 --zca --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}
  • Then, edit run_cifar10_ipc[xx]_style5.sh. Change {path_to_buffer_storage} to your path of buffers and {path_to_dataset} to your path of datasets.

  • Run:

    bash run_cifar10_ipc[xx]_style5.sh

    [xx] can be 1, 10, or 50.

  • Most of hyper-parameters are following the baseline repo. You may also try other configurations of arguments in the .sh files freely.

  • distill.py contains the original implementation of the baseline method MTT for comparison.

Acknowledgement

This code borrows heavily from mtt-distillation and DatasetCondensation.

Citation

If you find this project useful in your research, please consider cite our paper and the default baseline method:

@article{liu2022dataset,
    author    = {Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, Xinchao Wang},
    title     = {Dataset Distillation via Factorization},
    journal   = {NeurIPS},
    year      = {2022},
}
@inproceedings{
cazenavette2022distillation,
title={Dataset Distillation by Matching Training Trajectories},
author={George Cazenavette and Tongzhou Wang and Antonio Torralba and Alexei A. Efros and Jun-Yan Zhu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2022}
}