Keras BERT
Implementation of the BERT. Official pre-trained models could be loaded for feature extraction and prediction.
Install
pip install keras-bert
Usage
Load Official Pre-trained Models
In feature extraction demo, you should be able to get the same extraction result as the official model chinese_L-12_H-768_A-12
. And in prediction demo, the missing word in the sentence could be predicted.
Tokenizer
The Tokenizer
class is used for splitting texts and generating indices:
from keras_bert import Tokenizer
token_dict = {
'[CLS]': 0,
'[SEP]': 1,
'un': 2,
'##aff': 3,
'##able': 4,
'[UNK]': 5,
}
tokenizer = Tokenizer(token_dict)
print(tokenizer.tokenize('unaffable')) # The result should be `['[CLS]', 'un', '##aff', '##able', '[SEP]']`
indices, segments = tokenizer.encode('unaffable')
print(indices) # Should be `[0, 2, 3, 4, 1]`
print(segments) # Should be `[0, 0, 0, 0, 0]`
print(tokenizer.tokenize(first='unaffable', second='钢'))
# The result should be `['[CLS]', 'un', '##aff', '##able', '[SEP]', '钢', '[SEP]']`
indices, segments = tokenizer.encode(first='unaffable', second='钢', max_len=10)
print(indices) # Should be `[0, 2, 3, 4, 1, 5, 1, 0, 0, 0]`
print(segments) # Should be `[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]`
Train & Use
from keras_bert import get_base_dict, get_model, gen_batch_inputs
# A toy input example
sentence_pairs = [
[['all', 'work', 'and', 'no', 'play'], ['makes', 'jack', 'a', 'dull', 'boy']],
[['from', 'the', 'day', 'forth'], ['my', 'arm', 'changed']],
[['and', 'a', 'voice', 'echoed'], ['power', 'give', 'me', 'more', 'power']],
]
# Build token dictionary
token_dict = get_base_dict() # A dict that contains some special tokens
for pairs in sentence_pairs:
for token in pairs[0] + pairs[1]:
if token not in token_dict:
token_dict[token] = len(token_dict)
token_list = list(token_dict.keys()) # Used for selecting a random word
# Build & train the model
model = get_model(
token_num=len(token_dict),
head_num=5,
transformer_num=12,
embed_dim=25,
feed_forward_dim=100,
seq_len=20,
pos_num=20,
dropout_rate=0.05,
)
model.summary()
def _generator():
while True:
yield gen_batch_inputs(
sentence_pairs,
token_dict,
token_list,
seq_len=20,
mask_rate=0.3,
swap_sentence_rate=1.0,
)
model.fit_generator(
generator=_generator(),
steps_per_epoch=1000,
epochs=100,
validation_data=_generator(),
validation_steps=100,
callbacks=[
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
],
)
# Use the trained model
inputs, output_layer = get_model(
token_num=len(token_dict),
head_num=5,
transformer_num=12,
embed_dim=25,
feed_forward_dim=100,
seq_len=20,
pos_num=20,
dropout_rate=0.05,
training=False, # The input layers and output layer will be returned if `training` is `False`
trainable=False, # Whether the model is trainable. The default value is the same with `training`
output_layer_num=4, # The number of layers whose outputs will be concatenated as a single output.
Only available when `training` is `False`.
)
Use tensorflow.python.keras
Add TF_KERAS=1
to environment variables to use tensorflow.python.keras
.