/CAIN

Source code for AAAI 2020 paper "Channel Attention Is All You Need for Video Frame Interpolation"

Primary LanguagePythonMIT LicenseMIT

Channel Attention Is All You Need for Video Frame Interpolation

Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, Kyoung Mu Lee

2nd place in [AIM 2019 ICCV Workshop] - Video Temporal Super-Resolution Challenge

Project | Paper-AAAI (Download the paper [here] in case the AAAI link is broken) | Poster

Paper

Directory Structure

project
│   README.md
|   run.sh - main script to train CAIN model
|   run_noca.sh - script to train CAIN_NoCA model
|   test_custom.sh - script to run interpolation on custom dataset
|   eval.sh - script to evaluate on SNU-FILM benchmark
|   main.py - main file to run train/val
|   config.py - check & change training/testing configurations here
|   loss.py - defines different loss functions
|   utils.py - misc.
└───model
│   │   common.py
│   │   cain.py - main model
|   |   cain_noca.py - model without channel attention
|   |   cain_encdec.py - model with additional encoder-decoder
└───data - implements dataloaders for each dataset
│   |   vimeo90k.py - main training / testing dataset
|   |   video.py - custom data for testing
│   └───symbolic links to each dataset
|       | ...

Dependencies

Current version is tested on:

  • Ubuntu 18.04
  • Python==3.7.5
  • numpy==1.17
  • PyTorch==1.3.1, torchvision==0.4.2, cudatoolkit==10.1
  • tensorboard==2.0.0 (If you want training logs)
  • opencv==3.4.2
  • tqdm==4.39.0
# Easy installation (using Anaconda environment)
conda create -n cain
conda activate cain
conda install python=3.7
conda install pip numpy
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch
conda install tqdm opencv tensorboard
pip install pyqt5
pip install opencv-python
pip install opencv-python-headless

Model

Dataset Preparation

  • We use Vimeo90K Triplet dataset for training + testing.
    • After downloading the full dataset, make symbolic links in data/ folder :
      • ln -s /path/to/vimeo_triplet_data/ ./data/vimeo_triplet
    • Then you're done!
  • For more thorough evaluation, we built SNU-FILM (SNU Frame Interpolation with Large Motion) benchmark.
    • Download links can be found in the project page.
    • Also make symbolic links after download :
      • ln -s /path/to/SNU-FILM_data/ ./data/SNU-FILM
    • Done!

Usage

Training / Testing with Vimeo90K dataset

Open In Colab

  • First make symbolic links in data/ folder : ln -s /path/to/vimeo_triplet_data/ ./data/vimeo_triplet
  • For training: CUDA_VISIBLE_DEVICES=0 python main.py --exp_name EXPNAME --batch_size 16 --test_batch_size 16 --dataset vimeo90k --model cain --loss 1*L1 --max_epoch 200 --lr 0.0002
  • Or, just run ./run.sh
  • For testing performance on Vimeo90K dataset, just add --mode test option
  • For testing on SNU-FILM dataset, run ./eval.sh
    • Testing mode (choose from ['easy', 'medium', 'hard', 'extreme']) can be modified by changing --test_mode option in eval.sh.

Interpolating with custom video

  • Download pretrained models from
  • Prepare frame sequences in data/frame_seq
  • run test_custom.sh

Results

Video

Video

Citation

If you find this code useful for your research, please consider citing the following paper:

@inproceedings{choi2020cain,
    author = {Choi, Myungsub and Kim, Heewon and Han, Bohyung and Xu, Ning and Lee, Kyoung Mu},
    title = {Channel Attention Is All You Need for Video Frame Interpolation},
    booktitle = {AAAI},
    year = {2020}
}

Acknowledgement

Many parts of this code is adapted from:

We thank the authors for sharing codes for their great works.