language | thumbnail | license | tags | datasets | metrics | widget | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
en |
mit |
|
|
|
|
This model was fine-tuned from the HuggingFace BERT base uncased checkpoint on SQuAD1.1. This model is case-insensitive: it does not make a difference between english and English.
Dataset | Split | # samples |
---|---|---|
SQuAD1.1 | train | 90.6K |
SQuAD1.1 | eval | 11.1k |
-
Python:
3.7.5
-
Machine specs:
CPU: Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz
Memory: 32 GiB
GPUs: 2 GeForce GTX 1070, each with 8GiB memory
GPU driver: 418.87.01, CUDA: 10.1
-
script:
# after install https://github.com/huggingface/transformers cd examples/question-answering mkdir -p data wget -O data/train-v1.1.json https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json wget -O data/dev-v1.1.json https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json python run_squad.py \ --model_type bert \ --model_name_or_path bert-base-uncased \ --do_train \ --do_eval \ --do_lower_case \ --train_file train-v1.1.json \ --predict_file dev-v1.1.json \ --per_gpu_train_batch_size 12 \ --per_gpu_eval_batch_size=16 \ --learning_rate 3e-5 \ --num_train_epochs 2.0 \ --max_seq_length 320 \ --doc_stride 128 \ --data_dir data \ --output_dir data/bert-base-uncased-squad-v1 2>&1 | tee train-energy-bert-base-squad-v1.log
It took about 2 hours to finish.
Model size: 418M
Metric | # Value | # Original (Table 2) |
---|---|---|
EM | 80.9 | 80.8 |
F1 | 88.2 | 88.5 |
Note that the above results didn't involve any hyperparameter search.
from transformers import pipeline
qa_pipeline = pipeline(
"question-answering",
model="csarron/bert-base-uncased-squad-v1",
tokenizer="csarron/bert-base-uncased-squad-v1"
)
predictions = qa_pipeline({
'context': "The game was played on February 7, 2016 at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.",
'question': "What day was the game played on?"
})
print(predictions)
# output:
# {'score': 0.8730505704879761, 'start': 23, 'end': 39, 'answer': 'February 7, 2016'}
Created by Qingqing Cao | GitHub | Twitter
Made with ❤️ in New York.